Cargando…
Automatic Fitting of Spiking Neuron Models to Electrophysiological Recordings
Spiking models can accurately predict the spike trains produced by cortical neurons in response to somatically injected currents. Since the specific characteristics of the model depend on the neuron, a computational method is required to fit models to electrophysiological recordings. The fitting pro...
Autores principales: | Rossant, Cyrille, Goodman, Dan F. M., Platkiewicz, Jonathan, Brette, Romain |
---|---|
Formato: | Texto |
Lenguaje: | English |
Publicado: |
Frontiers Research Foundation
2010
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2835507/ https://www.ncbi.nlm.nih.gov/pubmed/20224819 http://dx.doi.org/10.3389/neuro.11.002.2010 |
Ejemplares similares
-
Fitting Neuron Models to Spike Trains
por: Rossant, Cyrille, et al.
Publicado: (2011) -
A dynamical system analysis of the adaptive spike threshold
por: Platkiewicz, Jonathan, et al.
Publicado: (2007) -
Impact of Fast Sodium Channel Inactivation on Spike Threshold Dynamics and Synaptic Integration
por: Platkiewicz, Jonathan, et al.
Publicado: (2011) -
Brian: A Simulator for Spiking Neural Networks in Python
por: Goodman, Dan, et al.
Publicado: (2008) -
Spiking Models for Level-Invariant Encoding
por: Brette, Romain
Publicado: (2012)