Cargando…
Plastic parasites: sophisticated strategies for survival and reproduction?
Adaptive phenotypic plasticity in life history traits, behaviours, and strategies is ubiquitous in biological systems. It is driven by variation in selection pressures across environmental gradients and operates under constraints imposed by trade-offs. Phenotypic plasticity has been thoroughly docum...
Autores principales: | , , |
---|---|
Formato: | Texto |
Lenguaje: | English |
Publicado: |
Blackwell Publishing Ltd
2009
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2836026/ https://www.ncbi.nlm.nih.gov/pubmed/20305703 http://dx.doi.org/10.1111/j.1752-4571.2008.00060.x |
_version_ | 1782178684670574592 |
---|---|
author | Reece, Sarah E Ramiro, Ricardo S Nussey, Daniel H |
author_facet | Reece, Sarah E Ramiro, Ricardo S Nussey, Daniel H |
author_sort | Reece, Sarah E |
collection | PubMed |
description | Adaptive phenotypic plasticity in life history traits, behaviours, and strategies is ubiquitous in biological systems. It is driven by variation in selection pressures across environmental gradients and operates under constraints imposed by trade-offs. Phenotypic plasticity has been thoroughly documented for multicellular taxa, such as insects, birds and mammals, and in many cases the underlying selective pressures are well understood. Whilst unicellular parasites face many of the same selective pressures and trade-offs, plasticity in their phenotypic traits has been largely overlooked and remains poorly understood. Here, we demonstrate that evolutionary theory, developed to explain variation observed in the life-history traits of multicellular organisms, can be applied to parasites. Though our message is general – we can expect the life-histories of all parasites to have evolved phenotypic plasticity – we focus our discussion on malaria parasites. We use an evolutionary framework to explain the trade-offs that parasites face and how plasticity in their life history traits will be expressed according to changes in their in-host environment. Testing whether variation in parasites traits is adaptive will provide new and fundamental insights into the basic biology of parasites, their epidemiology and the processes of disease during individual infections. |
format | Text |
id | pubmed-2836026 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2009 |
publisher | Blackwell Publishing Ltd |
record_format | MEDLINE/PubMed |
spelling | pubmed-28360262010-03-18 Plastic parasites: sophisticated strategies for survival and reproduction? Reece, Sarah E Ramiro, Ricardo S Nussey, Daniel H Evol Appl Synthesis Adaptive phenotypic plasticity in life history traits, behaviours, and strategies is ubiquitous in biological systems. It is driven by variation in selection pressures across environmental gradients and operates under constraints imposed by trade-offs. Phenotypic plasticity has been thoroughly documented for multicellular taxa, such as insects, birds and mammals, and in many cases the underlying selective pressures are well understood. Whilst unicellular parasites face many of the same selective pressures and trade-offs, plasticity in their phenotypic traits has been largely overlooked and remains poorly understood. Here, we demonstrate that evolutionary theory, developed to explain variation observed in the life-history traits of multicellular organisms, can be applied to parasites. Though our message is general – we can expect the life-histories of all parasites to have evolved phenotypic plasticity – we focus our discussion on malaria parasites. We use an evolutionary framework to explain the trade-offs that parasites face and how plasticity in their life history traits will be expressed according to changes in their in-host environment. Testing whether variation in parasites traits is adaptive will provide new and fundamental insights into the basic biology of parasites, their epidemiology and the processes of disease during individual infections. Blackwell Publishing Ltd 2009-02 2009-01-07 /pmc/articles/PMC2836026/ /pubmed/20305703 http://dx.doi.org/10.1111/j.1752-4571.2008.00060.x Text en © 2009 The Authors. Journal compilation © 2009 Blackwell Publishing Ltd |
spellingShingle | Synthesis Reece, Sarah E Ramiro, Ricardo S Nussey, Daniel H Plastic parasites: sophisticated strategies for survival and reproduction? |
title | Plastic parasites: sophisticated strategies for survival and reproduction? |
title_full | Plastic parasites: sophisticated strategies for survival and reproduction? |
title_fullStr | Plastic parasites: sophisticated strategies for survival and reproduction? |
title_full_unstemmed | Plastic parasites: sophisticated strategies for survival and reproduction? |
title_short | Plastic parasites: sophisticated strategies for survival and reproduction? |
title_sort | plastic parasites: sophisticated strategies for survival and reproduction? |
topic | Synthesis |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2836026/ https://www.ncbi.nlm.nih.gov/pubmed/20305703 http://dx.doi.org/10.1111/j.1752-4571.2008.00060.x |
work_keys_str_mv | AT reecesarahe plasticparasitessophisticatedstrategiesforsurvivalandreproduction AT ramiroricardos plasticparasitessophisticatedstrategiesforsurvivalandreproduction AT nusseydanielh plasticparasitessophisticatedstrategiesforsurvivalandreproduction |