Cargando…

Molecular Mechanisms of Resistance to Tumour Anti-Angiogenic Strategies

Tumour angiogenesis, described by Folkman in the early seventies, is an essential, complex, and dynamic process necessary for the growth of all solid tumours. Among the angiogenic factors secreted by the tumour cells, the Vascular Endothelial Growth Factor (VEGF) is one of the most important. Most t...

Descripción completa

Detalles Bibliográficos
Autores principales: Grépin, Renaud, Pagès, Gilles
Formato: Texto
Lenguaje:English
Publicado: Hindawi Publishing Corporation 2010
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2836176/
https://www.ncbi.nlm.nih.gov/pubmed/20224655
http://dx.doi.org/10.1155/2010/835680
Descripción
Sumario:Tumour angiogenesis, described by Folkman in the early seventies, is an essential, complex, and dynamic process necessary for the growth of all solid tumours. Among the angiogenic factors secreted by the tumour cells, the Vascular Endothelial Growth Factor (VEGF) is one of the most important. Most types of human cancer cells express elevated levels of this proangiogenic factor and its receptors. New molecules, called anti-angiogenic, are developed to impair VEGF pathway and tumour vasculature. Despite important results, the clinical benefits of anti-VEGF therapy are relatively modest and usually measured in weeks or months. Why following anti-angiogenic therapy do some patients respond transiently and then why does tumour grow again and disease progress and which compensatory mechanisms could explain the anti-angiogenic treatment failure?