Cargando…

Computing folding pathways between RNA secondary structures

Given an RNA sequence and two designated secondary structures A, B, we describe a new algorithm that computes a nearly optimal folding pathway from A to B. The algorithm, RNAtabupath, employs a tabu semi-greedy heuristic, known to be an effective search strategy in combinatorial optimization. Foldin...

Descripción completa

Detalles Bibliográficos
Autores principales: Dotu, Ivan, Lorenz, William A., Van Hentenryck, Pascal, Clote, Peter
Formato: Texto
Lenguaje:English
Publicado: Oxford University Press 2010
Materias:
RNA
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2836545/
https://www.ncbi.nlm.nih.gov/pubmed/20044352
http://dx.doi.org/10.1093/nar/gkp1054
Descripción
Sumario:Given an RNA sequence and two designated secondary structures A, B, we describe a new algorithm that computes a nearly optimal folding pathway from A to B. The algorithm, RNAtabupath, employs a tabu semi-greedy heuristic, known to be an effective search strategy in combinatorial optimization. Folding pathways, sometimes called routes or trajectories, are computed by RNAtabupath in a fraction of the time required by the barriers program of Vienna RNA Package. We benchmark RNAtabupath with other algorithms to compute low energy folding pathways between experimentally known structures of several conformational switches. The RNApathfinder web server, source code for algorithms to compute and analyze pathways and supplementary data are available at http://bioinformatics.bc.edu/clotelab/RNApathfinder.