Cargando…
Testing the additional predictive value of high-dimensional molecular data
BACKGROUND: While high-dimensional molecular data such as microarray gene expression data have been used for disease outcome prediction or diagnosis purposes for about ten years in biomedical research, the question of the additional predictive value of such data given that classical predictors are a...
Autores principales: | Boulesteix, Anne-Laure, Hothorn, Torsten |
---|---|
Formato: | Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2010
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2837029/ https://www.ncbi.nlm.nih.gov/pubmed/20144191 http://dx.doi.org/10.1186/1471-2105-11-78 |
Ejemplares similares
-
Bias in random forest variable importance measures: Illustrations, sources and a solution
por: Strobl, Carolin, et al.
Publicado: (2007) -
Trend tests for the evaluation of exposure-response relationships in epidemiological exposure studies
por: Hothorn, Ludwig A, et al.
Publicado: (2009) -
Nonparametric relevance-shifted multiple testing procedures for the analysis of high-dimensional multivariate data with small sample sizes
por: Frömke, Cornelia, et al.
Publicado: (2008) -
Priority-Lasso: a simple hierarchical approach to the prediction of clinical outcome using multi-omics data
por: Klau, Simon, et al.
Publicado: (2018) -
Combining location-and-scale batch effect adjustment with data cleaning by latent factor adjustment
por: Hornung, Roman, et al.
Publicado: (2016)