Cargando…

In vivo effects of rosiglitazone in a human neuroblastoma xenograft

BACKGROUND: Neuroblastoma (NB) is the most common extra-cranial solid tumour in infants. Unfortunately, most children present with advanced disease and have a poor prognosis. There is in vitro evidence that the peroxisome proliferator-activated receptor γ (PPARγ) might be a target for pharmacologica...

Descripción completa

Detalles Bibliográficos
Autores principales: Cellai, I, Petrangolini, G, Tortoreto, M, Pratesi, G, Luciani, P, Deledda, C, Benvenuti, S, Ricordati, C, Gelmini, S, Ceni, E, Galli, A, Balzi, M, Faraoni, P, Serio, M, Peri, A
Formato: Texto
Lenguaje:English
Publicado: Nature Publishing Group 2010
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2837558/
https://www.ncbi.nlm.nih.gov/pubmed/20068562
http://dx.doi.org/10.1038/sj.bjc.6605506
Descripción
Sumario:BACKGROUND: Neuroblastoma (NB) is the most common extra-cranial solid tumour in infants. Unfortunately, most children present with advanced disease and have a poor prognosis. There is in vitro evidence that the peroxisome proliferator-activated receptor γ (PPARγ) might be a target for pharmacological intervention in NB. We have previously demonstrated that the PPARγ agonist rosiglitazone (RGZ) exerts strong anti-tumoural effects in the human NB cell line, SK-N-AS. The aim of this study was to evaluate whether RGZ maintains its anti-tumoural effects against SK-N-AS NB cells in vivo. METHODS AND RESULTS: For this purpose, tumour cells were subcutaneously implanted in nude mice, and RGZ (150 mg kg(−1)) was administered by gavage daily for 4 weeks. At the end of treatment, a significant tumour weight inhibition (70%) was observed in RGZ-treated mice compared with control mice. The inhibition of tumour growth was supported by a strong anti-angiogenic activity, as assessed by CD-31 immunostaining in tumour samples. The number of apoptotic cells, as determined by cleaved caspase-3 immunostaining, seemed lower in RGZ-treated animals at the end of the treatment period than in control mice, likely because of the large tumour size observed in the latter group. CONCLUSIONS: To our knowledge, this is the first demonstration that RGZ effectively inhibits tumour growth in a human NB xenograft and our results suggest that PPARγ agonists may have a role in anti-tumoural strategies against NB.