Cargando…

Different screening strategies (single or dual) for the diagnosis of suspected latent tuberculosis: a cost effectiveness analysis

BACKGROUND: Previous health economic studies recommend either a dual screening strategy [tuberculin skin test (TST) followed by interferon-γ-release assay (IGRA)] or a single one [IGRA only] for latent tuberculosis infection (LTBI), the former largely based on claims that it is more cost-effective....

Descripción completa

Detalles Bibliográficos
Autores principales: Pooran, Anil, Booth, Helen, Miller, Robert F, Scott, Geoff, Badri, Motasim, Huggett, Jim F, Rook, Graham, Zumla, Alimuddin, Dheda, Keertan
Formato: Texto
Lenguaje:English
Publicado: BioMed Central 2010
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2837635/
https://www.ncbi.nlm.nih.gov/pubmed/20170555
http://dx.doi.org/10.1186/1471-2466-10-7
Descripción
Sumario:BACKGROUND: Previous health economic studies recommend either a dual screening strategy [tuberculin skin test (TST) followed by interferon-γ-release assay (IGRA)] or a single one [IGRA only] for latent tuberculosis infection (LTBI), the former largely based on claims that it is more cost-effective. We sought to examine that conclusion through the use of a model that accounts for the additional costs of adverse drug reactions and directly compares two commercially available versions of the IGRA: the Quantiferon-TB-Gold-In-Tube (QFT-GIT) and T-SPOT.TB. METHODS: A LTBI screening model directed at screening contacts was used to perform a cost-effectiveness analysis, from a UK healthcare perspective, taking into account the risk of isoniazid-related hepatotoxicity and post-exposure TB (2 years post contact) using the TST, QFT-GIT and T-SPOT.TB IGRAs. RESULTS: Examining costs alone, the TST/IGRA dual screening strategies (TST/T-SPOT.TB and TST/QFT-GIT; £162,387 and £157,048 per 1000 contacts, respectively) cost less than their single strategy counterparts (T-SPOT.TB and QFT-GIT; £203,983 and £202,921 per 1000 contacts) which have higher IGRA test costs and greater numbers of persons undergoing LTBI treatment. However, IGRA alone strategies direct healthcare interventions and costs more accurately to those that are truly infected. Subsequently, less contacts need to be treated to prevent an active case of TB (T-SPOT.TB and QFT-GIT; 61.7 and 69.7 contacts) in IGRA alone strategies. IGRA single strategies also prevent more cases of post-exposure TB. However, this greater effectiveness does not outweigh the lower incremental costs associated with the dual strategies. Consequently, when these costs are combined with effectiveness, the IGRA dual strategies are more cost-effective than their single strategy counterparts. Comparing between the IGRAs, T-SPOT.TB-based strategies (single and dual; £39,712 and £37,206 per active TB case prevented, respectively) were more cost-effective than the QFT-GIT-based strategies (single and dual; £42,051 and £37,699 per active TB case prevented, respectively). Using the TST alone was the least cost-effective (£47,840 per active TB case prevented). Cost effectiveness values were sensitive to changes in LTBI prevalence, IGRA test sensitivities/specificities and IGRA test costs. CONCLUSION: A dual strategy is more cost effective than a single strategy but this conclusion is sensitive to screening test assumptions and LTBI prevalence.