Cargando…

Mitogen-activated protein kinases in the porcine retinal arteries and neuroretina following retinal ischemia-reperfusion

PURPOSE: The aim of the present study was to examine changes in the expression of intracellular signal-transduction pathways, specifically mitogen-activated protein kinases, following retinal ischemia-reperfusion. METHODS: Retinal ischemia was induced by elevating the intraocular pressure in porcine...

Descripción completa

Detalles Bibliográficos
Autores principales: Gesslein, Bodil, Håkansson, Gisela, Carpio, Ronald, Gustafsson, Lotta, Perez, Maria-Thereza, Malmsjö, Malin
Formato: Texto
Lenguaje:English
Publicado: Molecular Vision 2010
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2838742/
https://www.ncbi.nlm.nih.gov/pubmed/20300568
_version_ 1782178877373677568
author Gesslein, Bodil
Håkansson, Gisela
Carpio, Ronald
Gustafsson, Lotta
Perez, Maria-Thereza
Malmsjö, Malin
author_facet Gesslein, Bodil
Håkansson, Gisela
Carpio, Ronald
Gustafsson, Lotta
Perez, Maria-Thereza
Malmsjö, Malin
author_sort Gesslein, Bodil
collection PubMed
description PURPOSE: The aim of the present study was to examine changes in the expression of intracellular signal-transduction pathways, specifically mitogen-activated protein kinases, following retinal ischemia-reperfusion. METHODS: Retinal ischemia was induced by elevating the intraocular pressure in porcine eyes, followed by 5, 12, or 20 h of reperfusion. The results were compared to those of the sham- operated fellow eye. The retinal arteries and neuroretina were isolated separately and examined. Tissue morphology and DNA fragmentation were studied using histology. Extracellular signal-regulated kinase 1 and 2 (ERK1/2), p38, c-junNH(2)-terminal kinases (JNK), and c-jun protein and mRNA expression were examined using immunofluorescence staining, western blot, and real-time PCR techniques. RESULTS: Pyknotic cell nuclei, terminal deoxynucleotidyl transferase dUTP nick end labeling (TUNEL)-positive cells, and glial fibrillary acidic protein mRNA expression were increased in ischemia, suggesting injury. Phosphorylated ERK1/2 protein levels were increased in the neuroretina following ischemia, while mRNA levels were unaltered. p38 protein and mRNA levels were not affected by ischemia. Immunofluorescence staining for phosphorylated p38 was especially intense in the retinal blood vessels, while only weak in the neuroretina. Phosphorylated JNK protein and mRNA were slightly decreased in ischemia. Phosphorylated c-jun protein and mRNA levels were higher in the neuroretina after ischemia-reperfusion. CONCLUSIONS: Retinal ischemia-reperfusion alters expression of mitogen-activated protein kinases, particularly ERK1/2, in the neuroretina and retinal arteries. The development of pharmacological treatment targeting these intracellular transduction pathways may prevent injury to the eye following retinal circulatory failure.
format Text
id pubmed-2838742
institution National Center for Biotechnology Information
language English
publishDate 2010
publisher Molecular Vision
record_format MEDLINE/PubMed
spelling pubmed-28387422010-03-17 Mitogen-activated protein kinases in the porcine retinal arteries and neuroretina following retinal ischemia-reperfusion Gesslein, Bodil Håkansson, Gisela Carpio, Ronald Gustafsson, Lotta Perez, Maria-Thereza Malmsjö, Malin Mol Vis Research Article PURPOSE: The aim of the present study was to examine changes in the expression of intracellular signal-transduction pathways, specifically mitogen-activated protein kinases, following retinal ischemia-reperfusion. METHODS: Retinal ischemia was induced by elevating the intraocular pressure in porcine eyes, followed by 5, 12, or 20 h of reperfusion. The results were compared to those of the sham- operated fellow eye. The retinal arteries and neuroretina were isolated separately and examined. Tissue morphology and DNA fragmentation were studied using histology. Extracellular signal-regulated kinase 1 and 2 (ERK1/2), p38, c-junNH(2)-terminal kinases (JNK), and c-jun protein and mRNA expression were examined using immunofluorescence staining, western blot, and real-time PCR techniques. RESULTS: Pyknotic cell nuclei, terminal deoxynucleotidyl transferase dUTP nick end labeling (TUNEL)-positive cells, and glial fibrillary acidic protein mRNA expression were increased in ischemia, suggesting injury. Phosphorylated ERK1/2 protein levels were increased in the neuroretina following ischemia, while mRNA levels were unaltered. p38 protein and mRNA levels were not affected by ischemia. Immunofluorescence staining for phosphorylated p38 was especially intense in the retinal blood vessels, while only weak in the neuroretina. Phosphorylated JNK protein and mRNA were slightly decreased in ischemia. Phosphorylated c-jun protein and mRNA levels were higher in the neuroretina after ischemia-reperfusion. CONCLUSIONS: Retinal ischemia-reperfusion alters expression of mitogen-activated protein kinases, particularly ERK1/2, in the neuroretina and retinal arteries. The development of pharmacological treatment targeting these intracellular transduction pathways may prevent injury to the eye following retinal circulatory failure. Molecular Vision 2010-03-10 /pmc/articles/PMC2838742/ /pubmed/20300568 Text en Copyright © 2010 Molecular Vision. http://creativecommons.org/licenses/by/3.0/ This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
spellingShingle Research Article
Gesslein, Bodil
Håkansson, Gisela
Carpio, Ronald
Gustafsson, Lotta
Perez, Maria-Thereza
Malmsjö, Malin
Mitogen-activated protein kinases in the porcine retinal arteries and neuroretina following retinal ischemia-reperfusion
title Mitogen-activated protein kinases in the porcine retinal arteries and neuroretina following retinal ischemia-reperfusion
title_full Mitogen-activated protein kinases in the porcine retinal arteries and neuroretina following retinal ischemia-reperfusion
title_fullStr Mitogen-activated protein kinases in the porcine retinal arteries and neuroretina following retinal ischemia-reperfusion
title_full_unstemmed Mitogen-activated protein kinases in the porcine retinal arteries and neuroretina following retinal ischemia-reperfusion
title_short Mitogen-activated protein kinases in the porcine retinal arteries and neuroretina following retinal ischemia-reperfusion
title_sort mitogen-activated protein kinases in the porcine retinal arteries and neuroretina following retinal ischemia-reperfusion
topic Research Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2838742/
https://www.ncbi.nlm.nih.gov/pubmed/20300568
work_keys_str_mv AT gessleinbodil mitogenactivatedproteinkinasesintheporcineretinalarteriesandneuroretinafollowingretinalischemiareperfusion
AT hakanssongisela mitogenactivatedproteinkinasesintheporcineretinalarteriesandneuroretinafollowingretinalischemiareperfusion
AT carpioronald mitogenactivatedproteinkinasesintheporcineretinalarteriesandneuroretinafollowingretinalischemiareperfusion
AT gustafssonlotta mitogenactivatedproteinkinasesintheporcineretinalarteriesandneuroretinafollowingretinalischemiareperfusion
AT perezmariathereza mitogenactivatedproteinkinasesintheporcineretinalarteriesandneuroretinafollowingretinalischemiareperfusion
AT malmsjomalin mitogenactivatedproteinkinasesintheporcineretinalarteriesandneuroretinafollowingretinalischemiareperfusion