Cargando…
Evaluation of statistical methods for normalization and differential expression in mRNA-Seq experiments
BACKGROUND: High-throughput sequencing technologies, such as the Illumina Genome Analyzer, are powerful new tools for investigating a wide range of biological and medical questions. Statistical and computational methods are key for drawing meaningful and accurate conclusions from the massive and com...
Autores principales: | Bullard, James H, Purdom, Elizabeth, Hansen, Kasper D, Dudoit, Sandrine |
---|---|
Formato: | Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2010
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2838869/ https://www.ncbi.nlm.nih.gov/pubmed/20167110 http://dx.doi.org/10.1186/1471-2105-11-94 |
Ejemplares similares
-
Bioconductor workflow for single-cell RNA sequencing: Normalization, dimensionality reduction, clustering, and lineage inference
por: Perraudeau, Fanny, et al.
Publicado: (2017) -
GC-Content Normalization for RNA-Seq Data
por: Risso, Davide, et al.
Publicado: (2011) -
Novel Low Abundance and Transient RNAs in Yeast Revealed by Tiling Microarrays and Ultra High–Throughput Sequencing Are Not Conserved Across Closely Related Yeast Species
por: Lee, Albert, et al.
Publicado: (2008) -
Statistical methods for identifying differentially expressed genes in RNA-Seq experiments
por: Fang, Zhide, et al.
Publicado: (2012) -
A general and flexible method for signal extraction from single-cell RNA-seq data
por: Risso, Davide, et al.
Publicado: (2018)