Cargando…
A statistical framework for differential network analysis from microarray data
BACKGROUND: It has been long well known that genes do not act alone; rather groups of genes act in consort during a biological process. Consequently, the expression levels of genes are dependent on each other. Experimental techniques to detect such interacting pairs of genes have been in place for q...
Autores principales: | Gill, Ryan, Datta, Somnath, Datta, Susmita |
---|---|
Formato: | Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2010
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2838870/ https://www.ncbi.nlm.nih.gov/pubmed/20170493 http://dx.doi.org/10.1186/1471-2105-11-95 |
Ejemplares similares
-
dna: An R package for differential network analysis
por: Gill, Ryan, et al.
Publicado: (2014) -
Methods for evaluating clustering algorithms for gene expression data using a reference set of functional classes
por: Datta, Susmita, et al.
Publicado: (2006) -
An adaptive optimal ensemble classifier via bagging and rank aggregation with applications to high dimensional data
por: Datta, Susmita, et al.
Publicado: (2010) -
A novel statistical approach for identification of the master regulator transcription factor
por: Sikdar, Sinjini, et al.
Publicado: (2017) -
Statistical Inference Methods for Sparse Biological Time Series Data
por: Ndukum, Juliet, et al.
Publicado: (2011)