Cargando…

The combination of deoxynivalenol and zearalenone at permitted feed concentrations causes serious physiological effects in young pigs

This study was to investigate the effects of the combination of deoxynivalenol (DON) and zearalenone (ZON) on pigs. Twenty-four weaning piglets were divided into a control group fed a diet free of mycotoxins and a toxin group fed a diet containing 1 mg/kg DON and 250 µg/kg ZON. The results showed th...

Descripción completa

Detalles Bibliográficos
Autores principales: Chen, Feng, Ma, Yulin, Xue, Chunyi, Ma, Jingyun, Xie, Qingmei, Wang, Genhu, Bi, Yingzuo, Cao, Yongchang
Formato: Texto
Lenguaje:English
Publicado: The Korean Society of Veterinary Science 2008
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2839111/
https://www.ncbi.nlm.nih.gov/pubmed/18296887
http://dx.doi.org/10.4142/jvs.2008.9.1.39
Descripción
Sumario:This study was to investigate the effects of the combination of deoxynivalenol (DON) and zearalenone (ZON) on pigs. Twenty-four weaning piglets were divided into a control group fed a diet free of mycotoxins and a toxin group fed a diet containing 1 mg/kg DON and 250 µg/kg ZON. The results showed that supplementation of DON and ZON in diets had extensive effects on pigs. More specifically, DON and ZON caused levels of total protein, albumin, and globulin in sera to decrease (p < 0.05) by 14.5%, 6.5% and 11.3%, respectively, and at the same time increased (p < 0.05) the serum enzyme activities of γ-glutamyltransferase, aspartate aminotransferase and alanine aminotransferase by 72.0%, 32.6% and 36.6%, respectively. In addition, DON and ZON decreased (p < 0.05) the level of anti-classical swine fever antibody titers by 14.8%. Real-time PCR showed that DON and ZON caused the mRNA expression levels of IFN-γ, TNF-α, IL-2, to decrease (p < 0.05) by 36.0%, 29.0% and 35.4%, respectively. Histopathological studies demonstrated that DON and ZON caused abnormalities in the liver, spleen, lymph nodes, uterus, and kidney. The concentrations of DON and ZON used in this study are in line with the published critical values permitted by BML. Our study clearly put the standard and adequacy of safety measures for these toxins into question. The authors suggest that with the increasing availability of cellular and molecular technologies, it is time to revisit the safety standards for toxins in feeds so as to make feeds safer, providing consumers with safer products.