Cargando…
Tactile-dependant corticomotor facilitation is influenced by discrimination performance in seniors
BACKGROUND: Active contraction leads to facilitation of motor responses evoked by transcranial magnetic stimulation (TMS). In small hand muscles, motor facilitation is known to be also influenced by the nature of the task. Recently, we showed that corticomotor facilitation was selectively enhanced w...
Autores principales: | , |
---|---|
Formato: | Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2010
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2841084/ https://www.ncbi.nlm.nih.gov/pubmed/20205734 http://dx.doi.org/10.1186/1744-9081-6-16 |
Sumario: | BACKGROUND: Active contraction leads to facilitation of motor responses evoked by transcranial magnetic stimulation (TMS). In small hand muscles, motor facilitation is known to be also influenced by the nature of the task. Recently, we showed that corticomotor facilitation was selectively enhanced when young participants actively discriminated tactile symbols with the tip of their index or little finger. This tactile-dependant motor facilitation reflected, for the large part, attentional influences associated with performing tactile discrimination, since execution of a concomitant distraction task abolished facilitation. In the present report, we extend these observations to examine the influence of age on the ability to produce extra motor facilitation when the hand is used for sensory exploration. METHODS: Corticomotor excitability was tested in 16 healthy seniors (58-83 years) while they actively moved their right index finger over a surface under two task conditions. In the tactile discrimination (TD) condition, participants attended to the spatial location of two tactile symbols on the explored surface, while in the non discrimination (ND) condition, participants simply moved their finger over a blank surface. Changes in amplitude, in latency and in the silent period (SP) duration were measured from recordings of motor evoked potentials (MEP) in the right first dorsal interosseous muscle in response to TMS of the left motor cortex. RESULTS: Healthy seniors exhibited widely varying levels of performance with the TD task, older age being associated with lower accuracy and vice-versa. Large inter-individual variations were also observed in terms of tactile-specific corticomotor facilitation. Regrouping seniors into higher (n = 6) and lower performance groups (n = 10) revealed a significant task by performance interaction. This latter interaction reflected differences between higher and lower performance groups; tactile-related facilitation being observed mainly in the former group. Latency measurements and SP durations were not affected by task conditions. CONCLUSIONS: The present findings provide further insights into the factors influencing task-dependant changes in corticomotor excitability in the context of aging. Our results, in particular, highlight the importance of adjusting task demands and controlling for attention when attempting to elicit task-specific motor facilitation in older persons engaged in fine manual actions. Such information could be critical in the future for planning interventions to re-educate or maintain hand function in the presence of neurological impairments. |
---|