Cargando…
Estimating the Stoichiometry of HIV Neutralization
HIV-1 virions infect target cells by first establishing contact between envelope glycoprotein trimers on the virion's surface and CD4 receptors on a target cell, recruiting co-receptors, fusing with the cell membrane and finally releasing the genetic material into the target cell. Specific expe...
Autores principales: | , |
---|---|
Formato: | Texto |
Lenguaje: | English |
Publicado: |
Public Library of Science
2010
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2841622/ https://www.ncbi.nlm.nih.gov/pubmed/20333245 http://dx.doi.org/10.1371/journal.pcbi.1000713 |
Sumario: | HIV-1 virions infect target cells by first establishing contact between envelope glycoprotein trimers on the virion's surface and CD4 receptors on a target cell, recruiting co-receptors, fusing with the cell membrane and finally releasing the genetic material into the target cell. Specific experimental setups allow the study of the number of trimer-receptor-interactions needed for infection, i.e., the stoichiometry of entry and also the number of antibodies needed to prevent one trimer from engaging successfully in the entry process, i.e., the stoichiometry of (trimer) neutralization. Mathematical models are required to infer the stoichiometric parameters from these experimental data. Recently, we developed mathematical models for the estimations of the stoichiometry of entry [1]. In this article, we show how our models can be extended to investigate the stoichiometry of trimer neutralization. We study how various biological parameters affect the estimate of the stoichiometry of neutralization. We find that the distribution of trimer numbers—which is also an important determinant of the stoichiometry of entry—influences the estimated value of the stoichiometry of neutralization. In contrast, other parameters, which characterize the experimental system, diminish the information we can extract from the data about the stoichiometry of neutralization, and thus reduce our confidence in the estimate. We illustrate the use of our models by re-analyzing previously published data on the neutralization sensitivity [2], which contains measurements of neutralization sensitivity of viruses with different envelope proteins to antibodies with various specificities. Our mathematical framework represents the formal basis for the estimation of the stoichiometry of neutralization. Together with the stoichiometry of entry, the stoichiometry of trimer neutralization will allow one to calculate how many antibodies are required to neutralize a virion or even an entire population of virions. |
---|