Cargando…
Pharmacological changes in cellular Ca(2+) homeostasis parallel initiation of atrial arrhythmogenesis in murine langendorff-perfused hearts
1. Intracellular Ca(2+) overload has been associated with established atrial arrhythmogenesis. The present experiments went on to correlate acute initiation of atrial arrhythmogenesis in Langendorff-perfused mouse hearts with changes in Ca(2+) homeostasis in isolated atrial myocytes following pharma...
Autores principales: | , , , , , , , |
---|---|
Formato: | Texto |
Lenguaje: | English |
Publicado: |
Blackwell Publishing Ltd
2009
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2841827/ https://www.ncbi.nlm.nih.gov/pubmed/19298534 http://dx.doi.org/10.1111/j.1440-1681.2009.05170.x |
_version_ | 1782179168194134016 |
---|---|
author | Zhang, Yanmin Schwiening, Christof Killeen, Matthew J Zhang, Yanhui Ma, Aiqun Lei, Ming Grace, Andrew A Huang, Christopher L-H |
author_facet | Zhang, Yanmin Schwiening, Christof Killeen, Matthew J Zhang, Yanhui Ma, Aiqun Lei, Ming Grace, Andrew A Huang, Christopher L-H |
author_sort | Zhang, Yanmin |
collection | PubMed |
description | 1. Intracellular Ca(2+) overload has been associated with established atrial arrhythmogenesis. The present experiments went on to correlate acute initiation of atrial arrhythmogenesis in Langendorff-perfused mouse hearts with changes in Ca(2+) homeostasis in isolated atrial myocytes following pharmacological procedures that modified the storage or release of sarcoplasmic reticular (SR) Ca(2+) or inhibited entry of extracellular Ca(2+). 2. Caffeine (1mmol/L) elicited diastolic Ca(2+) waves in regularly stimulated atrial myocytes immediately following addition. This was followed by a decline in the amplitude of the evoked transients and the disappearance of such diastolic events, suggesting partial SR Ca(2+) depletion. 3. Cyclopiazonic acid (CPA; 0.15µmol/L) produced more gradual reductions in evoked Ca(2+) transients and abolished diastolic Ca(2+) events produced by the further addition of caffeine. 4. Nifedipine (0.5µmol/L) produced immediate reductions in evoked Ca(2+) transients. Further addition of caffeine produced an immediate increase followed by a decline in the amplitude of the evoked Ca(2+) transients, without eliciting diastolic Ca(2+) events. 5. These findings correlated with changes in spontaneous and provoked atrial arrhythmogenecity in mouse isolated Langendorf-perfused hearts. Thus, caffeine was pro-arrhythmogenic immediately following but not >5min after application and both CPA and nifedipine pretreatment inhibited such arrhythmogenesis. 6. Together, these findings relate acute atrial arrhythmogenesis in intact hearts to diastolic Ca(2+) events in atrial myocytes that, in turn, depend upon a finite SR Ca(2+) store and diastolic Ca(2+) release following Ca(2+)-induced Ca(2+) release initiated by the entry of extracellular Ca(2+). |
format | Text |
id | pubmed-2841827 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2009 |
publisher | Blackwell Publishing Ltd |
record_format | MEDLINE/PubMed |
spelling | pubmed-28418272010-03-27 Pharmacological changes in cellular Ca(2+) homeostasis parallel initiation of atrial arrhythmogenesis in murine langendorff-perfused hearts Zhang, Yanmin Schwiening, Christof Killeen, Matthew J Zhang, Yanhui Ma, Aiqun Lei, Ming Grace, Andrew A Huang, Christopher L-H Clin Exp Pharmacol Physiol Original Articles 1. Intracellular Ca(2+) overload has been associated with established atrial arrhythmogenesis. The present experiments went on to correlate acute initiation of atrial arrhythmogenesis in Langendorff-perfused mouse hearts with changes in Ca(2+) homeostasis in isolated atrial myocytes following pharmacological procedures that modified the storage or release of sarcoplasmic reticular (SR) Ca(2+) or inhibited entry of extracellular Ca(2+). 2. Caffeine (1mmol/L) elicited diastolic Ca(2+) waves in regularly stimulated atrial myocytes immediately following addition. This was followed by a decline in the amplitude of the evoked transients and the disappearance of such diastolic events, suggesting partial SR Ca(2+) depletion. 3. Cyclopiazonic acid (CPA; 0.15µmol/L) produced more gradual reductions in evoked Ca(2+) transients and abolished diastolic Ca(2+) events produced by the further addition of caffeine. 4. Nifedipine (0.5µmol/L) produced immediate reductions in evoked Ca(2+) transients. Further addition of caffeine produced an immediate increase followed by a decline in the amplitude of the evoked Ca(2+) transients, without eliciting diastolic Ca(2+) events. 5. These findings correlated with changes in spontaneous and provoked atrial arrhythmogenecity in mouse isolated Langendorf-perfused hearts. Thus, caffeine was pro-arrhythmogenic immediately following but not >5min after application and both CPA and nifedipine pretreatment inhibited such arrhythmogenesis. 6. Together, these findings relate acute atrial arrhythmogenesis in intact hearts to diastolic Ca(2+) events in atrial myocytes that, in turn, depend upon a finite SR Ca(2+) store and diastolic Ca(2+) release following Ca(2+)-induced Ca(2+) release initiated by the entry of extracellular Ca(2+). Blackwell Publishing Ltd 2009-10 /pmc/articles/PMC2841827/ /pubmed/19298534 http://dx.doi.org/10.1111/j.1440-1681.2009.05170.x Text en © 2009 Blackwell Publishing Asia Pty Ltd http://creativecommons.org/licenses/by/2.5/ Re-use of this article is permitted in accordance with the Creative Commons Deed, Attribution 2.5, which does not permit commercial exploitation. |
spellingShingle | Original Articles Zhang, Yanmin Schwiening, Christof Killeen, Matthew J Zhang, Yanhui Ma, Aiqun Lei, Ming Grace, Andrew A Huang, Christopher L-H Pharmacological changes in cellular Ca(2+) homeostasis parallel initiation of atrial arrhythmogenesis in murine langendorff-perfused hearts |
title | Pharmacological changes in cellular Ca(2+) homeostasis parallel initiation of atrial arrhythmogenesis in murine langendorff-perfused hearts |
title_full | Pharmacological changes in cellular Ca(2+) homeostasis parallel initiation of atrial arrhythmogenesis in murine langendorff-perfused hearts |
title_fullStr | Pharmacological changes in cellular Ca(2+) homeostasis parallel initiation of atrial arrhythmogenesis in murine langendorff-perfused hearts |
title_full_unstemmed | Pharmacological changes in cellular Ca(2+) homeostasis parallel initiation of atrial arrhythmogenesis in murine langendorff-perfused hearts |
title_short | Pharmacological changes in cellular Ca(2+) homeostasis parallel initiation of atrial arrhythmogenesis in murine langendorff-perfused hearts |
title_sort | pharmacological changes in cellular ca(2+) homeostasis parallel initiation of atrial arrhythmogenesis in murine langendorff-perfused hearts |
topic | Original Articles |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2841827/ https://www.ncbi.nlm.nih.gov/pubmed/19298534 http://dx.doi.org/10.1111/j.1440-1681.2009.05170.x |
work_keys_str_mv | AT zhangyanmin pharmacologicalchangesincellularca2homeostasisparallelinitiationofatrialarrhythmogenesisinmurinelangendorffperfusedhearts AT schwieningchristof pharmacologicalchangesincellularca2homeostasisparallelinitiationofatrialarrhythmogenesisinmurinelangendorffperfusedhearts AT killeenmatthewj pharmacologicalchangesincellularca2homeostasisparallelinitiationofatrialarrhythmogenesisinmurinelangendorffperfusedhearts AT zhangyanhui pharmacologicalchangesincellularca2homeostasisparallelinitiationofatrialarrhythmogenesisinmurinelangendorffperfusedhearts AT maaiqun pharmacologicalchangesincellularca2homeostasisparallelinitiationofatrialarrhythmogenesisinmurinelangendorffperfusedhearts AT leiming pharmacologicalchangesincellularca2homeostasisparallelinitiationofatrialarrhythmogenesisinmurinelangendorffperfusedhearts AT graceandrewa pharmacologicalchangesincellularca2homeostasisparallelinitiationofatrialarrhythmogenesisinmurinelangendorffperfusedhearts AT huangchristopherlh pharmacologicalchangesincellularca2homeostasisparallelinitiationofatrialarrhythmogenesisinmurinelangendorffperfusedhearts |