Cargando…
Performance of mixed effects models in the analysis of mediated longitudinal data
BACKGROUND: Linear mixed effects models (LMMs) are a common approach for analyzing longitudinal data in a variety of settings. Although LMMs may be applied to complex data structures, such as settings where mediators are present, it is unclear whether they perform well relative to methods for mediat...
Autores principales: | Blood, Emily A, Cabral, Howard, Heeren, Timothy, Cheng, Debbie M |
---|---|
Formato: | Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2010
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2842282/ https://www.ncbi.nlm.nih.gov/pubmed/20170503 http://dx.doi.org/10.1186/1471-2288-10-16 |
Ejemplares similares
-
Non-linear mixed models in the analysis of mediated longitudinal data with binary outcomes
por: Blood, Emily A, et al.
Publicado: (2012) -
The Use of Mixed Models for the Analysis of Mediated Data with Time-Dependent Predictors
por: Blood, Emily A., et al.
Publicado: (2011) -
Revisiting methods for modeling longitudinal and survival data: Framingham Heart Study
por: Ngwa, Julius S., et al.
Publicado: (2021) -
Longitudinal data analysis: autoregressive linear mixed effects models
por: Funatogawa, Ikuko, et al.
Publicado: (2018) -
Accessible analysis of longitudinal data with linear mixed effects models
por: Murphy, Jessica I., et al.
Publicado: (2022)