Cargando…
DREAM3: Network Inference Using Dynamic Context Likelihood of Relatedness and the Inferelator
BACKGROUND: Many current works aiming to learn regulatory networks from systems biology data must balance model complexity with respect to data availability and quality. Methods that learn regulatory associations based on unit-less metrics, such as Mutual Information, are attractive in that they sca...
Autores principales: | Madar, Aviv, Greenfield, Alex, Vanden-Eijnden, Eric, Bonneau, Richard |
---|---|
Formato: | Texto |
Lenguaje: | English |
Publicado: |
Public Library of Science
2010
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2842436/ https://www.ncbi.nlm.nih.gov/pubmed/20339551 http://dx.doi.org/10.1371/journal.pone.0009803 |
Ejemplares similares
-
DREAM4: Combining Genetic and Dynamic Information to Identify Biological Networks and Dynamical Models
por: Greenfield, Alex, et al.
Publicado: (2010) -
High-performance single-cell gene regulatory network inference at scale: the Inferelator 3.0
por: Skok Gibbs, Claudia, et al.
Publicado: (2022) -
The Inferelator: an algorithm for learning parsimonious regulatory networks from systems-biology data sets de novo
por: Bonneau, Richard, et al.
Publicado: (2006) -
Robust data-driven incorporation of prior knowledge into the inference of dynamic regulatory networks
por: Greenfield, Alex, et al.
Publicado: (2013) -
Pairwise relatedness testing in the context of inbreeding: expectation and variance of the likelihood ratio
por: Brustad, Hilde Kjelgaard, et al.
Publicado: (2020)