Cargando…
Learning to represent visual input
One of the central problems in computational neuroscience is to understand how the object-recognition pathway of the cortex learns a deep hierarchy of nonlinear feature detectors. Recent progress in machine learning shows that it is possible to learn deep hierarchies without requiring any labelled d...
Autor principal: | Hinton, Geoffrey E. |
---|---|
Formato: | Texto |
Lenguaje: | English |
Publicado: |
The Royal Society
2010
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2842706/ https://www.ncbi.nlm.nih.gov/pubmed/20008395 http://dx.doi.org/10.1098/rstb.2009.0200 |
Ejemplares similares
-
Learning Arm/Hand Coordination with an Altered Visual Input
por: Iftime Nielsen, Simona Denisia, et al.
Publicado: (2010) -
Mouse visual cortex areas represent perceptual and semantic features of learned visual categories
por: Goltstein, Pieter M., et al.
Publicado: (2021) -
Sparse Coding Can Predict Primary Visual Cortex Receptive Field Changes Induced by Abnormal Visual Input
por: Hunt, Jonathan J., et al.
Publicado: (2013) -
Multimodal Sensor-Input Architecture with Deep Learning for Audio-Visual Speech Recognition in Wild
por: He, Yibo, et al.
Publicado: (2023) -
Machine learning for neuroscience
por: Hinton, Geoffrey E
Publicado: (2011)