Cargando…
The changes in various hydroxyproline fractions in aortic tissue of rabbits are closely related to the progression of atherosclerosis
BACKGROUND: The most important function of collagen and elastin is to induce several mechanical parameters which are known to play a dominant role in governing mechanical properties of the blood vessels. The aortic tissue of rabbit is one of the important sources of collagen and elastin. The effects...
Autores principales: | , , , |
---|---|
Formato: | Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2010
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2844378/ https://www.ncbi.nlm.nih.gov/pubmed/20214825 http://dx.doi.org/10.1186/1476-511X-9-26 |
Sumario: | BACKGROUND: The most important function of collagen and elastin is to induce several mechanical parameters which are known to play a dominant role in governing mechanical properties of the blood vessels. The aortic tissue of rabbit is one of the important sources of collagen and elastin. The effects of high fat diet (HFD) on the hydroxyproline (Hyp) fractions in serum and aortic tissues of rabbits and collagen content in the aortic tissues of rabbits have not been documented before. The present study was undertaken to investigate the changes in Hyp fractions in serum and aortic tissues of rabbits and collagen content in the aortic tissues of rabbits during the progression of atherosclerosis. The atherosclerotic model used in this study was the New Zealand white rabbit (male; 12 weeks old). Twenty five rabbits were individually caged, and divided into control group (NOR; n = 10) and HFD group (CHO; n = 15). The control group was fed (100 g/day) of normal (NOR) diet for a period of 15 weeks. The HFD group was fed normal diet supplemented with 1.0% cholesterol plus 1.0% olive oil (100 g/day) for the same period of time. RESULTS: We found that the TC, LDLC, and TG (mg/dl) were significantly (p < 0.001) increased in HFD rabbits compared with control rabbits with percentage normalized changes of 1198%, 1591%, and 710%, respectively. The peptide-bound Hyp in the serum was significantly (P < 0.05) increased in HFD rabbits compared with control rabbits with percentage normalized change of 517% while it significantly (P < 0.01) decreased in aortic tissues of HFD rabbits compared with control rabbits with percentage normalized change of 65%. The protein-bound Hyp in the serum was significantly (P < 0.01) increased in HFD rabbits compared with control rabbits with percentage normalized change of 100%; the protein-bound Hyp in the aortic tissues of control rabbits was 235.30 ± 55.14 (Mean ± SD) while it was not detectable (ND) in HFD rabbits. Total serum Hyp showed no significant (P < 0.05) change in HFD rabbits compared with control rabbits while it was significantly (P < 0.05) decreased in aortic tissues of HFD rabbits compared with control rabbits with percentage normalized change of 73%. The total collagen was significantly (p < 0.01) decreased in aortic tissues of HFD rabbits compared with control rabbits with percentage normalized change of 73% which was supported by histological study. CONCLUSIONS: These results suggest that percentage decrease in various Hyp fractions in aortic tissue of HFD rabbits are closely related to percentage decrease of collagen content in aortic tissues of HFD rabbits. These results also suggest that it may be possible to use the changes in various Hyp fractions in aortic tissues of rabbits as an important risk factor during the progression of atherosclerosis. |
---|