Cargando…
Accelerated similarity searching and clustering of large compound sets by geometric embedding and locality sensitive hashing
Motivation: Similarity searching and clustering of chemical compounds by structural similarities are important computational approaches for identifying drug-like small molecules. Most algorithms available for these tasks are limited by their speed and scalability, and cannot handle today's larg...
Autores principales: | Cao, Yiqun, Jiang, Tao, Girke, Thomas |
---|---|
Formato: | Texto |
Lenguaje: | English |
Publicado: |
Oxford University Press
2010
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2844998/ https://www.ncbi.nlm.nih.gov/pubmed/20179075 http://dx.doi.org/10.1093/bioinformatics/btq067 |
Ejemplares similares
-
MapReduce Based Personalized Locality Sensitive Hashing for Similarity Joins on Large Scale Data
por: Wang, Jingjing, et al.
Publicado: (2015) -
Fast Image Search with Locality-Sensitive Hashing and Homogeneous Kernels Map
por: Li, Jun-yi, et al.
Publicado: (2015) -
Locality-sensitive hashing for the edit distance
por: Marçais, Guillaume, et al.
Publicado: (2019) -
LexicHash: sequence similarity estimation via lexicographic comparison of hashes
por: Greenberg, Grant, et al.
Publicado: (2023) -
Similarity hashing for charged particle tracking
por: Amrouche, Sabrina, et al.
Publicado: (2019)