Cargando…

Comparing Transcription Rate and mRNA Abundance as Parameters for Biochemical Pathway and Network Analysis

The cells adapt to extra- and intra-cellular signals by dynamic orchestration of activities of pathways in the biochemical networks. Dynamic control of the gene expression process represents a major mechanism for pathway activity regulation. Gene expression has thus been routinely measured, most fre...

Descripción completa

Detalles Bibliográficos
Autores principales: Hayles, Brewster, Yellaboina, Sailu, Wang, Degeng
Formato: Texto
Lenguaje:English
Publicado: Public Library of Science 2010
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2845646/
https://www.ncbi.nlm.nih.gov/pubmed/20361042
http://dx.doi.org/10.1371/journal.pone.0009908
_version_ 1782179425201160192
author Hayles, Brewster
Yellaboina, Sailu
Wang, Degeng
author_facet Hayles, Brewster
Yellaboina, Sailu
Wang, Degeng
author_sort Hayles, Brewster
collection PubMed
description The cells adapt to extra- and intra-cellular signals by dynamic orchestration of activities of pathways in the biochemical networks. Dynamic control of the gene expression process represents a major mechanism for pathway activity regulation. Gene expression has thus been routinely measured, most frequently at steady-state mRNA abundance level using micro-array technology. The results are widely used in statistical inference of the structures of underlying biochemical networks, with the assumption that functionally related genes exhibit similar dynamic profiles. Steady-state mRNA abundance, however, is a composite of two factors: transcription rate and mRNA degradation rate. The question being asked here is therefore whether steady-state mRNA abundance or any of two factors is a more informative measurement target for studying network dynamics. The yeast S. cerevisiae was used as model organism and transcription rate was chosen out of the two factors in this study, because genome-wide determination of transcription rates has been reported for several physiological processes in this species. Our strategy is to test which one is a better measurement of functional relatedness between genes. The analysis was performed on those S. cerevisiae genes that have bacterial orthologs as identified by reciprocal BLAST analysis, so that functional relatedness of a gene pair can be measured by the frequency at which their bacterial orthologs co-occur in the same operon in the collection of bacterial genomes. It is found that transcription rate data is generally a better parameter for functional relatedness than steady state mRNA abundance, suggesting transcription rate data is more informative to use in deciphering the logics used by the cells in dynamic regulation of biochemical network behaviors. The significance of this finding for network and systems biology, as well as biomedical research in general, is discussed.
format Text
id pubmed-2845646
institution National Center for Biotechnology Information
language English
publishDate 2010
publisher Public Library of Science
record_format MEDLINE/PubMed
spelling pubmed-28456462010-04-02 Comparing Transcription Rate and mRNA Abundance as Parameters for Biochemical Pathway and Network Analysis Hayles, Brewster Yellaboina, Sailu Wang, Degeng PLoS One Research Article The cells adapt to extra- and intra-cellular signals by dynamic orchestration of activities of pathways in the biochemical networks. Dynamic control of the gene expression process represents a major mechanism for pathway activity regulation. Gene expression has thus been routinely measured, most frequently at steady-state mRNA abundance level using micro-array technology. The results are widely used in statistical inference of the structures of underlying biochemical networks, with the assumption that functionally related genes exhibit similar dynamic profiles. Steady-state mRNA abundance, however, is a composite of two factors: transcription rate and mRNA degradation rate. The question being asked here is therefore whether steady-state mRNA abundance or any of two factors is a more informative measurement target for studying network dynamics. The yeast S. cerevisiae was used as model organism and transcription rate was chosen out of the two factors in this study, because genome-wide determination of transcription rates has been reported for several physiological processes in this species. Our strategy is to test which one is a better measurement of functional relatedness between genes. The analysis was performed on those S. cerevisiae genes that have bacterial orthologs as identified by reciprocal BLAST analysis, so that functional relatedness of a gene pair can be measured by the frequency at which their bacterial orthologs co-occur in the same operon in the collection of bacterial genomes. It is found that transcription rate data is generally a better parameter for functional relatedness than steady state mRNA abundance, suggesting transcription rate data is more informative to use in deciphering the logics used by the cells in dynamic regulation of biochemical network behaviors. The significance of this finding for network and systems biology, as well as biomedical research in general, is discussed. Public Library of Science 2010-03-26 /pmc/articles/PMC2845646/ /pubmed/20361042 http://dx.doi.org/10.1371/journal.pone.0009908 Text en Hayles et al. http://creativecommons.org/licenses/by/4.0/ This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are properly credited.
spellingShingle Research Article
Hayles, Brewster
Yellaboina, Sailu
Wang, Degeng
Comparing Transcription Rate and mRNA Abundance as Parameters for Biochemical Pathway and Network Analysis
title Comparing Transcription Rate and mRNA Abundance as Parameters for Biochemical Pathway and Network Analysis
title_full Comparing Transcription Rate and mRNA Abundance as Parameters for Biochemical Pathway and Network Analysis
title_fullStr Comparing Transcription Rate and mRNA Abundance as Parameters for Biochemical Pathway and Network Analysis
title_full_unstemmed Comparing Transcription Rate and mRNA Abundance as Parameters for Biochemical Pathway and Network Analysis
title_short Comparing Transcription Rate and mRNA Abundance as Parameters for Biochemical Pathway and Network Analysis
title_sort comparing transcription rate and mrna abundance as parameters for biochemical pathway and network analysis
topic Research Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2845646/
https://www.ncbi.nlm.nih.gov/pubmed/20361042
http://dx.doi.org/10.1371/journal.pone.0009908
work_keys_str_mv AT haylesbrewster comparingtranscriptionrateandmrnaabundanceasparametersforbiochemicalpathwayandnetworkanalysis
AT yellaboinasailu comparingtranscriptionrateandmrnaabundanceasparametersforbiochemicalpathwayandnetworkanalysis
AT wangdegeng comparingtranscriptionrateandmrnaabundanceasparametersforbiochemicalpathwayandnetworkanalysis