Cargando…

The corticothalamocortical circuit drives higher-order cortex in the mouse

An unresolved question in neuroscience relates to the extent to which corticothalamocortical circuits emanating from layer 5B play a role in information transfer through the cortical hierarchy. Here, using a novel form of optical imaging in a brain slice preparation, we demonstrate that the corticot...

Descripción completa

Detalles Bibliográficos
Autores principales: Theyel, Brian B., Llano, Daniel A., Sherman, S. Murray
Formato: Texto
Lenguaje:English
Publicado: 2009
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2846438/
https://www.ncbi.nlm.nih.gov/pubmed/19966840
http://dx.doi.org/10.1038/nn.2449
Descripción
Sumario:An unresolved question in neuroscience relates to the extent to which corticothalamocortical circuits emanating from layer 5B play a role in information transfer through the cortical hierarchy. Here, using a novel form of optical imaging in a brain slice preparation, we demonstrate that the corticothalamocortical pathway drives robust activity in higher-order somatosensory cortex. When the direct corticocortical pathway was interrupted, secondary somatosensory cortex showed robust activity in response to stimulation of the barrel field in primary somatosensory cortex (S1BF), which was eliminated after subsequently cutting the somatosensory thalamus, suggesting a highly efficacious corticothalamocortical circuit. Further, after chemically inhibiting the thalamus, activation in secondary somatosensory cortex was eliminated, with a subsequent return after washout. Finally, stimulation of layer 5B in S1BF, and not layer 6, drove corticothalamocortical activation. These findings suggest that the corticothalamocortical circuit is a physiologically viable candidate for information transfer to higher-order cortical areas.