Cargando…
Ovarian cancer classification based on dimensionality reduction for SELDI-TOF data
BACKGROUND: Recent advances in proteomics technologies such as SELDI-TOF mass spectrometry has shown promise in the detection of early stage cancers. However, dimensionality reduction and classification are considerable challenges in statistical machine learning. We therefore propose a novel approac...
Autores principales: | Tang, Kai-Lin, Li, Tong-Hua, Xiong, Wen-Wei, Chen, Kai |
---|---|
Formato: | Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2010
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2846906/ https://www.ncbi.nlm.nih.gov/pubmed/20187963 http://dx.doi.org/10.1186/1471-2105-11-109 |
Ejemplares similares
-
SELDI-TOF Serum Profiling for Prognostic and Diagnostic Classification of Breast Cancers
por: Laronga, Christine, et al.
Publicado: (2004) -
SELDI-TOF MS profiling of serum for detection of nasopharyngeal carcinoma
por: Huang, Yuan-Jiao, et al.
Publicado: (2009) -
A method for improving SELDI-TOF mass spectrometry data quality
por: Whistler, Toni, et al.
Publicado: (2007) -
SELDI-TOF mass spectrometry of High-Density Lipoprotein
por: Levels, Johannes HM, et al.
Publicado: (2007) -
The Application of SELDI-TOF-MS in Clinical Diagnosis of Cancers
por: Liu, Chibo
Publicado: (2011)