Cargando…

Robinson-Foulds Supertrees

BACKGROUND: Supertree methods synthesize collections of small phylogenetic trees with incomplete taxon overlap into comprehensive trees, or supertrees, that include all taxa found in the input trees. Supertree methods based on the well established Robinson-Foulds (RF) distance have the potential to...

Descripción completa

Detalles Bibliográficos
Autores principales: Bansal, Mukul S, Burleigh, J Gordon, Eulenstein, Oliver, Fernández-Baca, David
Formato: Texto
Lenguaje:English
Publicado: BioMed Central 2010
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2846952/
https://www.ncbi.nlm.nih.gov/pubmed/20181274
http://dx.doi.org/10.1186/1748-7188-5-18
_version_ 1782179527474020352
author Bansal, Mukul S
Burleigh, J Gordon
Eulenstein, Oliver
Fernández-Baca, David
author_facet Bansal, Mukul S
Burleigh, J Gordon
Eulenstein, Oliver
Fernández-Baca, David
author_sort Bansal, Mukul S
collection PubMed
description BACKGROUND: Supertree methods synthesize collections of small phylogenetic trees with incomplete taxon overlap into comprehensive trees, or supertrees, that include all taxa found in the input trees. Supertree methods based on the well established Robinson-Foulds (RF) distance have the potential to build supertrees that retain much information from the input trees. Specifically, the RF supertree problem seeks a binary supertree that minimizes the sum of the RF distances from the supertree to the input trees. Thus, an RF supertree is a supertree that is consistent with the largest number of clusters (or clades) from the input trees. RESULTS: We introduce efficient, local search based, hill-climbing heuristics for the intrinsically hard RF supertree problem on rooted trees. These heuristics use novel non-trivial algorithms for the SPR and TBR local search problems which improve on the time complexity of the best known (naïve) solutions by a factor of Θ(n) and Θ(n(2)) respectively (where n is the number of taxa, or leaves, in the supertree). We use an implementation of our new algorithms to examine the performance of the RF supertree method and compare it to matrix representation with parsimony (MRP) and the triplet supertree method using four supertree data sets. Not only did our RF heuristic provide fast estimates of RF supertrees in all data sets, but the RF supertrees also retained more of the information from the input trees (based on the RF distance) than the other supertree methods. CONCLUSIONS: Our heuristics for the RF supertree problem, based on our new local search algorithms, make it possible for the first time to estimate large supertrees by directly optimizing the RF distance from rooted input trees to the supertrees. This provides a new and fast method to build accurate supertrees. RF supertrees may also be useful for estimating majority-rule(-) supertrees, which are a generalization of majority-rule consensus trees.
format Text
id pubmed-2846952
institution National Center for Biotechnology Information
language English
publishDate 2010
publisher BioMed Central
record_format MEDLINE/PubMed
spelling pubmed-28469522010-03-30 Robinson-Foulds Supertrees Bansal, Mukul S Burleigh, J Gordon Eulenstein, Oliver Fernández-Baca, David Algorithms Mol Biol Research BACKGROUND: Supertree methods synthesize collections of small phylogenetic trees with incomplete taxon overlap into comprehensive trees, or supertrees, that include all taxa found in the input trees. Supertree methods based on the well established Robinson-Foulds (RF) distance have the potential to build supertrees that retain much information from the input trees. Specifically, the RF supertree problem seeks a binary supertree that minimizes the sum of the RF distances from the supertree to the input trees. Thus, an RF supertree is a supertree that is consistent with the largest number of clusters (or clades) from the input trees. RESULTS: We introduce efficient, local search based, hill-climbing heuristics for the intrinsically hard RF supertree problem on rooted trees. These heuristics use novel non-trivial algorithms for the SPR and TBR local search problems which improve on the time complexity of the best known (naïve) solutions by a factor of Θ(n) and Θ(n(2)) respectively (where n is the number of taxa, or leaves, in the supertree). We use an implementation of our new algorithms to examine the performance of the RF supertree method and compare it to matrix representation with parsimony (MRP) and the triplet supertree method using four supertree data sets. Not only did our RF heuristic provide fast estimates of RF supertrees in all data sets, but the RF supertrees also retained more of the information from the input trees (based on the RF distance) than the other supertree methods. CONCLUSIONS: Our heuristics for the RF supertree problem, based on our new local search algorithms, make it possible for the first time to estimate large supertrees by directly optimizing the RF distance from rooted input trees to the supertrees. This provides a new and fast method to build accurate supertrees. RF supertrees may also be useful for estimating majority-rule(-) supertrees, which are a generalization of majority-rule consensus trees. BioMed Central 2010-02-24 /pmc/articles/PMC2846952/ /pubmed/20181274 http://dx.doi.org/10.1186/1748-7188-5-18 Text en Copyright ©2010 Bansal et al; licensee BioMed Central Ltd. http://creativecommons.org/licenses/by/2.0 This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
spellingShingle Research
Bansal, Mukul S
Burleigh, J Gordon
Eulenstein, Oliver
Fernández-Baca, David
Robinson-Foulds Supertrees
title Robinson-Foulds Supertrees
title_full Robinson-Foulds Supertrees
title_fullStr Robinson-Foulds Supertrees
title_full_unstemmed Robinson-Foulds Supertrees
title_short Robinson-Foulds Supertrees
title_sort robinson-foulds supertrees
topic Research
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2846952/
https://www.ncbi.nlm.nih.gov/pubmed/20181274
http://dx.doi.org/10.1186/1748-7188-5-18
work_keys_str_mv AT bansalmukuls robinsonfouldssupertrees
AT burleighjgordon robinsonfouldssupertrees
AT eulensteinoliver robinsonfouldssupertrees
AT fernandezbacadavid robinsonfouldssupertrees