Cargando…
The embryonic genes Dkk3, Hoxd8, Hoxd9 and Tbx1 identify muscle types in a diet-independent and fiber-type unrelated way
BACKGROUND: The mouse skeletal muscle is composed of four distinct fiber types that differ in contractile function, number of mitochondria and metabolism. Every muscle type has a specific composition and distribution of the four fiber types. To find novel genes involved in specifying muscle types, w...
Autores principales: | , , , , , |
---|---|
Formato: | Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2010
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2847971/ https://www.ncbi.nlm.nih.gov/pubmed/20230627 http://dx.doi.org/10.1186/1471-2164-11-176 |
_version_ | 1782179620619026432 |
---|---|
author | de Wilde, Janneke Hulshof, Martijn FM Boekschoten, Mark V de Groot, Philip Smit, Egbert Mariman, Edwin CM |
author_facet | de Wilde, Janneke Hulshof, Martijn FM Boekschoten, Mark V de Groot, Philip Smit, Egbert Mariman, Edwin CM |
author_sort | de Wilde, Janneke |
collection | PubMed |
description | BACKGROUND: The mouse skeletal muscle is composed of four distinct fiber types that differ in contractile function, number of mitochondria and metabolism. Every muscle type has a specific composition and distribution of the four fiber types. To find novel genes involved in specifying muscle types, we used microarray analysis to compare the gastrocnemius with the quadriceps from mice fed a low fat diet (LFD) or high fat diet (HFD) for 8 weeks. Additional qPCR analysis were performed in the gastrocnemius, quadriceps and soleus muscle from mice fed an LFD or HFD for 20 weeks. RESULTS: In mice fed the 8-week LFD 162 genes were differentially expressed in the gastrocnemius vs. the quadriceps. Genes with the strongest differences in expression were markers for oxidative fiber types (e.g. Tnni1) and genes which are known to be involved in embryogenesis (Dkk3, Hoxd8,Hoxd9 and Tbx1). Also Dkk2, Hoxa5, Hoxa10, Hoxc9, Hoxc10, Hoxc6 and Tbx15 were detectably, but not differentially expressed in adult muscle tissue. Expression of differentially expressed genes was not influenced by an 8-week or 20-week HFD. Comparing gastrocnemius, quadriceps and soleus, expression of Hoxd8 and Hoxd9 was not related with expression of markers for the four different fiber types. We found that the expression of both Hoxd8 and Hoxd9 was much higher in the gastrocnemius than in the quadriceps or soleus, whereas the expression of Dkk3 was high in quadriceps, but low in both gastrocnemius and soleus. Finally, expression of Tbx1 was high in quadriceps, intermediate in soleus and low in gastrocnemius. CONCLUSIONS: We found that genes from the Dkk family, Hox family and Tbx family are detectably expressed in adult mouse muscle. Interestingly, expression of Dkk3, Hoxd8, Hoxd9 and Tbx1 was highly different between gastrocnemius, quadriceps and soleus. In fact, every muscle type showed a unique combination of expression of these four genes which was not influenced by diet. Altogether, we conclude that genes important for embryogenesis identify mouse muscle types in a diet-independent and fiber type-unrelated manner. |
format | Text |
id | pubmed-2847971 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2010 |
publisher | BioMed Central |
record_format | MEDLINE/PubMed |
spelling | pubmed-28479712010-04-01 The embryonic genes Dkk3, Hoxd8, Hoxd9 and Tbx1 identify muscle types in a diet-independent and fiber-type unrelated way de Wilde, Janneke Hulshof, Martijn FM Boekschoten, Mark V de Groot, Philip Smit, Egbert Mariman, Edwin CM BMC Genomics Research Article BACKGROUND: The mouse skeletal muscle is composed of four distinct fiber types that differ in contractile function, number of mitochondria and metabolism. Every muscle type has a specific composition and distribution of the four fiber types. To find novel genes involved in specifying muscle types, we used microarray analysis to compare the gastrocnemius with the quadriceps from mice fed a low fat diet (LFD) or high fat diet (HFD) for 8 weeks. Additional qPCR analysis were performed in the gastrocnemius, quadriceps and soleus muscle from mice fed an LFD or HFD for 20 weeks. RESULTS: In mice fed the 8-week LFD 162 genes were differentially expressed in the gastrocnemius vs. the quadriceps. Genes with the strongest differences in expression were markers for oxidative fiber types (e.g. Tnni1) and genes which are known to be involved in embryogenesis (Dkk3, Hoxd8,Hoxd9 and Tbx1). Also Dkk2, Hoxa5, Hoxa10, Hoxc9, Hoxc10, Hoxc6 and Tbx15 were detectably, but not differentially expressed in adult muscle tissue. Expression of differentially expressed genes was not influenced by an 8-week or 20-week HFD. Comparing gastrocnemius, quadriceps and soleus, expression of Hoxd8 and Hoxd9 was not related with expression of markers for the four different fiber types. We found that the expression of both Hoxd8 and Hoxd9 was much higher in the gastrocnemius than in the quadriceps or soleus, whereas the expression of Dkk3 was high in quadriceps, but low in both gastrocnemius and soleus. Finally, expression of Tbx1 was high in quadriceps, intermediate in soleus and low in gastrocnemius. CONCLUSIONS: We found that genes from the Dkk family, Hox family and Tbx family are detectably expressed in adult mouse muscle. Interestingly, expression of Dkk3, Hoxd8, Hoxd9 and Tbx1 was highly different between gastrocnemius, quadriceps and soleus. In fact, every muscle type showed a unique combination of expression of these four genes which was not influenced by diet. Altogether, we conclude that genes important for embryogenesis identify mouse muscle types in a diet-independent and fiber type-unrelated manner. BioMed Central 2010-03-15 /pmc/articles/PMC2847971/ /pubmed/20230627 http://dx.doi.org/10.1186/1471-2164-11-176 Text en Copyright ©2010 de Wilde et al; licensee BioMed Central Ltd. http://creativecommons.org/licenses/by/2.0 This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. |
spellingShingle | Research Article de Wilde, Janneke Hulshof, Martijn FM Boekschoten, Mark V de Groot, Philip Smit, Egbert Mariman, Edwin CM The embryonic genes Dkk3, Hoxd8, Hoxd9 and Tbx1 identify muscle types in a diet-independent and fiber-type unrelated way |
title | The embryonic genes Dkk3, Hoxd8, Hoxd9 and Tbx1 identify muscle types in a diet-independent and fiber-type unrelated way |
title_full | The embryonic genes Dkk3, Hoxd8, Hoxd9 and Tbx1 identify muscle types in a diet-independent and fiber-type unrelated way |
title_fullStr | The embryonic genes Dkk3, Hoxd8, Hoxd9 and Tbx1 identify muscle types in a diet-independent and fiber-type unrelated way |
title_full_unstemmed | The embryonic genes Dkk3, Hoxd8, Hoxd9 and Tbx1 identify muscle types in a diet-independent and fiber-type unrelated way |
title_short | The embryonic genes Dkk3, Hoxd8, Hoxd9 and Tbx1 identify muscle types in a diet-independent and fiber-type unrelated way |
title_sort | embryonic genes dkk3, hoxd8, hoxd9 and tbx1 identify muscle types in a diet-independent and fiber-type unrelated way |
topic | Research Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2847971/ https://www.ncbi.nlm.nih.gov/pubmed/20230627 http://dx.doi.org/10.1186/1471-2164-11-176 |
work_keys_str_mv | AT dewildejanneke theembryonicgenesdkk3hoxd8hoxd9andtbx1identifymuscletypesinadietindependentandfibertypeunrelatedway AT hulshofmartijnfm theembryonicgenesdkk3hoxd8hoxd9andtbx1identifymuscletypesinadietindependentandfibertypeunrelatedway AT boekschotenmarkv theembryonicgenesdkk3hoxd8hoxd9andtbx1identifymuscletypesinadietindependentandfibertypeunrelatedway AT degrootphilip theembryonicgenesdkk3hoxd8hoxd9andtbx1identifymuscletypesinadietindependentandfibertypeunrelatedway AT smitegbert theembryonicgenesdkk3hoxd8hoxd9andtbx1identifymuscletypesinadietindependentandfibertypeunrelatedway AT marimanedwincm theembryonicgenesdkk3hoxd8hoxd9andtbx1identifymuscletypesinadietindependentandfibertypeunrelatedway AT dewildejanneke embryonicgenesdkk3hoxd8hoxd9andtbx1identifymuscletypesinadietindependentandfibertypeunrelatedway AT hulshofmartijnfm embryonicgenesdkk3hoxd8hoxd9andtbx1identifymuscletypesinadietindependentandfibertypeunrelatedway AT boekschotenmarkv embryonicgenesdkk3hoxd8hoxd9andtbx1identifymuscletypesinadietindependentandfibertypeunrelatedway AT degrootphilip embryonicgenesdkk3hoxd8hoxd9andtbx1identifymuscletypesinadietindependentandfibertypeunrelatedway AT smitegbert embryonicgenesdkk3hoxd8hoxd9andtbx1identifymuscletypesinadietindependentandfibertypeunrelatedway AT marimanedwincm embryonicgenesdkk3hoxd8hoxd9andtbx1identifymuscletypesinadietindependentandfibertypeunrelatedway |