Cargando…
The eSS rat, a nonobese model of disordered glucose and lipid metabolism and fatty liver
BACKGROUND: eSS is a rat model of type 2 diabetes characterized by fasting hyperglycemia, glucose intolerance, hyperinsulinemia and early hypertriglyceridemia. Diabetic symptoms worsen during the second year of life as insulin release decreases. In 12-month-old males a diffuse hepatic steatosis was...
Autores principales: | , , , , |
---|---|
Formato: | Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2010
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2847988/ https://www.ncbi.nlm.nih.gov/pubmed/20236525 http://dx.doi.org/10.1186/1758-5996-2-15 |
Sumario: | BACKGROUND: eSS is a rat model of type 2 diabetes characterized by fasting hyperglycemia, glucose intolerance, hyperinsulinemia and early hypertriglyceridemia. Diabetic symptoms worsen during the second year of life as insulin release decreases. In 12-month-old males a diffuse hepatic steatosis was detected. We report the disturbances of lipid metabolism of the model with regard to the diabetic syndrome. METHODS: The study was conducted in eight 12-month-old eSS male rats and seven age/weight matched eumetabolic Wistar rats fed with a complete commercial diet al libitum. Fasting plasmatic glucose, insulin, triglycerides, total cholesterol, low-density and high-density lipoprotein, and nonesterified fatty acids levels were measured. Very low density and intermediate-density lipoproteins were analyzed and hepatic lipase activity was determined. RESULTS: eSS rats developed hyperglycemia and hyperinsulinemia, indicating insulin resistance. Compared with controls, diabetic rats exhibited high plasmatic levels of NEFA, triglycerides (TG), total cholesterol (Chol) and LDL-Chol while high-density lipoprotein (HDL) cholesterol values were reduced. eSS rats also displayed TG-rich VLDL and IDL particles without changes in hepatic lipase activity. CONCLUSION: The nonobese eSS rats develop a syndrome characterized by glucose and lipid disorders and hepatic steatosis that may provide new opportunities for studying the pathogenesis of human type 2 diabetes. |
---|