Cargando…
Transcriptome survey of the anhydrobiotic tardigrade Milnesium tardigradum in comparison with Hypsibius dujardini and Richtersius coronifer
BACKGROUND: The phenomenon of desiccation tolerance, also called anhydrobiosis, involves the ability of an organism to survive the loss of almost all cellular water without sustaining irreversible damage. Although there are several physiological, morphological and ecological studies on tardigrades,...
Autores principales: | , , , , , , , , |
---|---|
Formato: | Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2010
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2848246/ https://www.ncbi.nlm.nih.gov/pubmed/20226016 http://dx.doi.org/10.1186/1471-2164-11-168 |
_version_ | 1782179666407194624 |
---|---|
author | Mali, Brahim Grohme, Markus A Förster, Frank Dandekar, Thomas Schnölzer, Martina Reuter, Dirk Wełnicz, Weronika Schill, Ralph O Frohme, Marcus |
author_facet | Mali, Brahim Grohme, Markus A Förster, Frank Dandekar, Thomas Schnölzer, Martina Reuter, Dirk Wełnicz, Weronika Schill, Ralph O Frohme, Marcus |
author_sort | Mali, Brahim |
collection | PubMed |
description | BACKGROUND: The phenomenon of desiccation tolerance, also called anhydrobiosis, involves the ability of an organism to survive the loss of almost all cellular water without sustaining irreversible damage. Although there are several physiological, morphological and ecological studies on tardigrades, only limited DNA sequence information is available. Therefore, we explored the transcriptome in the active and anhydrobiotic state of the tardigrade Milnesium tardigradum which has extraordinary tolerance to desiccation and freezing. In this study, we present the first overview of the transcriptome of M. tardigradum and its response to desiccation and discuss potential parallels to stress responses in other organisms. RESULTS: We sequenced a total of 9984 expressed sequence tags (ESTs) from two cDNA libraries from the eutardigrade M. tardigradum in its active and inactive, anhydrobiotic (tun) stage. Assembly of these ESTs resulted in 3283 putative unique transcripts, whereof ~50% showed significant sequence similarity to known genes. The resulting unigenes were functionally annotated using the Gene Ontology (GO) vocabulary. A GO term enrichment analysis revealed several GOs that were significantly underrepresented in the inactive stage. Furthermore we compared the putative unigenes of M. tardigradum with ESTs from two other eutardigrade species that are available from public sequence databases, namely Richtersius coronifer and Hypsibius dujardini. The processed sequences of the three tardigrade species revealed similar functional content and the M. tardigradum dataset contained additional sequences from tardigrades not present in the other two. CONCLUSIONS: This study describes novel sequence data from the tardigrade M. tardigradum, which significantly contributes to the available tardigrade sequence data and will help to establish this extraordinary tardigrade as a model for studying anhydrobiosis. Functional comparison of active and anhydrobiotic tardigrades revealed a differential distribution of Gene Ontology terms associated with chromatin structure and the translation machinery, which are underrepresented in the inactive animals. These findings imply a widespread metabolic response of the animals on dehydration. The collective tardigrade transcriptome data will serve as a reference for further studies and support the identification and characterization of genes involved in the anhydrobiotic response. |
format | Text |
id | pubmed-2848246 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2010 |
publisher | BioMed Central |
record_format | MEDLINE/PubMed |
spelling | pubmed-28482462010-04-01 Transcriptome survey of the anhydrobiotic tardigrade Milnesium tardigradum in comparison with Hypsibius dujardini and Richtersius coronifer Mali, Brahim Grohme, Markus A Förster, Frank Dandekar, Thomas Schnölzer, Martina Reuter, Dirk Wełnicz, Weronika Schill, Ralph O Frohme, Marcus BMC Genomics Research Article BACKGROUND: The phenomenon of desiccation tolerance, also called anhydrobiosis, involves the ability of an organism to survive the loss of almost all cellular water without sustaining irreversible damage. Although there are several physiological, morphological and ecological studies on tardigrades, only limited DNA sequence information is available. Therefore, we explored the transcriptome in the active and anhydrobiotic state of the tardigrade Milnesium tardigradum which has extraordinary tolerance to desiccation and freezing. In this study, we present the first overview of the transcriptome of M. tardigradum and its response to desiccation and discuss potential parallels to stress responses in other organisms. RESULTS: We sequenced a total of 9984 expressed sequence tags (ESTs) from two cDNA libraries from the eutardigrade M. tardigradum in its active and inactive, anhydrobiotic (tun) stage. Assembly of these ESTs resulted in 3283 putative unique transcripts, whereof ~50% showed significant sequence similarity to known genes. The resulting unigenes were functionally annotated using the Gene Ontology (GO) vocabulary. A GO term enrichment analysis revealed several GOs that were significantly underrepresented in the inactive stage. Furthermore we compared the putative unigenes of M. tardigradum with ESTs from two other eutardigrade species that are available from public sequence databases, namely Richtersius coronifer and Hypsibius dujardini. The processed sequences of the three tardigrade species revealed similar functional content and the M. tardigradum dataset contained additional sequences from tardigrades not present in the other two. CONCLUSIONS: This study describes novel sequence data from the tardigrade M. tardigradum, which significantly contributes to the available tardigrade sequence data and will help to establish this extraordinary tardigrade as a model for studying anhydrobiosis. Functional comparison of active and anhydrobiotic tardigrades revealed a differential distribution of Gene Ontology terms associated with chromatin structure and the translation machinery, which are underrepresented in the inactive animals. These findings imply a widespread metabolic response of the animals on dehydration. The collective tardigrade transcriptome data will serve as a reference for further studies and support the identification and characterization of genes involved in the anhydrobiotic response. BioMed Central 2010-03-12 /pmc/articles/PMC2848246/ /pubmed/20226016 http://dx.doi.org/10.1186/1471-2164-11-168 Text en Copyright ©2010 Mali et al; licensee BioMed Central Ltd. http://creativecommons.org/licenses/by/2.0 This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. |
spellingShingle | Research Article Mali, Brahim Grohme, Markus A Förster, Frank Dandekar, Thomas Schnölzer, Martina Reuter, Dirk Wełnicz, Weronika Schill, Ralph O Frohme, Marcus Transcriptome survey of the anhydrobiotic tardigrade Milnesium tardigradum in comparison with Hypsibius dujardini and Richtersius coronifer |
title | Transcriptome survey of the anhydrobiotic tardigrade Milnesium tardigradum in comparison with Hypsibius dujardini and Richtersius coronifer |
title_full | Transcriptome survey of the anhydrobiotic tardigrade Milnesium tardigradum in comparison with Hypsibius dujardini and Richtersius coronifer |
title_fullStr | Transcriptome survey of the anhydrobiotic tardigrade Milnesium tardigradum in comparison with Hypsibius dujardini and Richtersius coronifer |
title_full_unstemmed | Transcriptome survey of the anhydrobiotic tardigrade Milnesium tardigradum in comparison with Hypsibius dujardini and Richtersius coronifer |
title_short | Transcriptome survey of the anhydrobiotic tardigrade Milnesium tardigradum in comparison with Hypsibius dujardini and Richtersius coronifer |
title_sort | transcriptome survey of the anhydrobiotic tardigrade milnesium tardigradum in comparison with hypsibius dujardini and richtersius coronifer |
topic | Research Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2848246/ https://www.ncbi.nlm.nih.gov/pubmed/20226016 http://dx.doi.org/10.1186/1471-2164-11-168 |
work_keys_str_mv | AT malibrahim transcriptomesurveyoftheanhydrobiotictardigrademilnesiumtardigradumincomparisonwithhypsibiusdujardiniandrichtersiuscoronifer AT grohmemarkusa transcriptomesurveyoftheanhydrobiotictardigrademilnesiumtardigradumincomparisonwithhypsibiusdujardiniandrichtersiuscoronifer AT forsterfrank transcriptomesurveyoftheanhydrobiotictardigrademilnesiumtardigradumincomparisonwithhypsibiusdujardiniandrichtersiuscoronifer AT dandekarthomas transcriptomesurveyoftheanhydrobiotictardigrademilnesiumtardigradumincomparisonwithhypsibiusdujardiniandrichtersiuscoronifer AT schnolzermartina transcriptomesurveyoftheanhydrobiotictardigrademilnesiumtardigradumincomparisonwithhypsibiusdujardiniandrichtersiuscoronifer AT reuterdirk transcriptomesurveyoftheanhydrobiotictardigrademilnesiumtardigradumincomparisonwithhypsibiusdujardiniandrichtersiuscoronifer AT wełniczweronika transcriptomesurveyoftheanhydrobiotictardigrademilnesiumtardigradumincomparisonwithhypsibiusdujardiniandrichtersiuscoronifer AT schillralpho transcriptomesurveyoftheanhydrobiotictardigrademilnesiumtardigradumincomparisonwithhypsibiusdujardiniandrichtersiuscoronifer AT frohmemarcus transcriptomesurveyoftheanhydrobiotictardigrademilnesiumtardigradumincomparisonwithhypsibiusdujardiniandrichtersiuscoronifer |