Cargando…
Mocapy++ - A toolkit for inference and learning in dynamic Bayesian networks
BACKGROUND: Mocapy++ is a toolkit for parameter learning and inference in dynamic Bayesian networks (DBNs). It supports a wide range of DBN architectures and probability distributions, including distributions from directional statistics (the statistics of angles, directions and orientations). RESULT...
Autores principales: | Paluszewski, Martin, Hamelryck, Thomas |
---|---|
Formato: | Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2010
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2848649/ https://www.ncbi.nlm.nih.gov/pubmed/20226024 http://dx.doi.org/10.1186/1471-2105-11-126 |
Ejemplares similares
-
LAIT: a local ancestry inference toolkit
por: Hui, Daniel, et al.
Publicado: (2017) -
ABCtoolbox: a versatile toolkit for approximate Bayesian computations
por: Wegmann, Daniel, et al.
Publicado: (2010) -
BCM: toolkit for Bayesian analysis of Computational Models using samplers
por: Thijssen, Bram, et al.
Publicado: (2016) -
shinyBN: an online application for interactive Bayesian network inference and visualization
por: Chen, Jiajin, et al.
Publicado: (2019) -
Reconstructing protein structure from solvent exposure using tabu search
por: Paluszewski, Martin, et al.
Publicado: (2006)