Cargando…

ERK1/2 Signaling Dominates Over RhoA Signaling in Regulating Early Changes in RNA Expression Induced by Endothelin-1 in Neonatal Rat Cardiomyocytes

BACKGROUND: Cardiomyocyte hypertrophy is associated with changes in gene expression. Extracellular signal-regulated kinases 1/2 (ERK1/2) and RhoA [activated by hypertrophic agonists (e.g. endothelin-1)] regulate gene expression and are implicated in the response, but their relative significance in r...

Descripción completa

Detalles Bibliográficos
Autores principales: Marshall, Andrew K., Barrett, Oliver P. T., Cullingford, Timothy E., Shanmugasundram, Achchuthan, Sugden, Peter H., Clerk, Angela
Formato: Texto
Lenguaje:English
Publicado: Public Library of Science 2010
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2848868/
https://www.ncbi.nlm.nih.gov/pubmed/20368814
http://dx.doi.org/10.1371/journal.pone.0010027
Descripción
Sumario:BACKGROUND: Cardiomyocyte hypertrophy is associated with changes in gene expression. Extracellular signal-regulated kinases 1/2 (ERK1/2) and RhoA [activated by hypertrophic agonists (e.g. endothelin-1)] regulate gene expression and are implicated in the response, but their relative significance in regulating the cardiomyocyte transcriptome is unknown. Our aim was to establish the significance of ERK1/2 and/or RhoA in the early cardiomyocyte transcriptomic response to endothelin-1. METHODS/PRINCIPAL FINDINGS: Cardiomyocytes were exposed to endothelin-1 (1 h) with/without PD184352 (to inhibit ERK1/2) or C3 transferase (C3T, to inhibit RhoA). RNA expression was analyzed using microarrays and qPCR. ERK1/2 signaling positively regulated ∼65% of the early gene expression response to ET-1 with a small (∼2%) negative effect, whereas RhoA signaling positively regulated ∼10% of the early gene expression response to ET-1 with a greater (∼14%) negative contribution. Of RNAs non-responsive to endothelin-1, 66 or 448 were regulated by PD184352 or C3T, respectively, indicating that RhoA had a more significant effect on baseline RNA expression. mRNAs upregulated by endothelin-1 encoded a number of receptor ligands (e.g. Ereg, Areg, Hbegf) and transcription factors (e.g. Abra/Srf) that potentially propagate the response. CONCLUSIONS/SIGNIFICANCE: ERK1/2 dominates over RhoA in the early transcriptomic response to endothelin-1. RhoA plays a major role in maintaining baseline RNA expression but, with upregulation of Abra/Srf by endothelin-1, RhoA may regulate changes in RNA expression over longer times. Our data identify ERK1/2 as a more significant node than RhoA in regulating the early stages of cardiomyocyte hypertrophy.