Cargando…
An optimal control theory approach to non-pharmaceutical interventions
BACKGROUND: Non-pharmaceutical interventions (NPI) are the first line of defense against pandemic influenza. These interventions dampen virus spread by reducing contact between infected and susceptible persons. Because they curtail essential societal activities, they must be applied judiciously. Opt...
Autores principales: | , , |
---|---|
Formato: | Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2010
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2850906/ https://www.ncbi.nlm.nih.gov/pubmed/20170501 http://dx.doi.org/10.1186/1471-2334-10-32 |
_version_ | 1782179819247632384 |
---|---|
author | Lin, Feng Muthuraman, Kumar Lawley, Mark |
author_facet | Lin, Feng Muthuraman, Kumar Lawley, Mark |
author_sort | Lin, Feng |
collection | PubMed |
description | BACKGROUND: Non-pharmaceutical interventions (NPI) are the first line of defense against pandemic influenza. These interventions dampen virus spread by reducing contact between infected and susceptible persons. Because they curtail essential societal activities, they must be applied judiciously. Optimal control theory is an approach for modeling and balancing competing objectives such as epidemic spread and NPI cost. METHODS: We apply optimal control on an epidemiologic compartmental model to develop triggers for NPI implementation. The objective is to minimize expected person-days lost from influenza related deaths and NPI implementations for the model. We perform a multivariate sensitivity analysis based on Latin Hypercube Sampling to study the effects of input parameters on the optimal control policy. Additional studies investigated the effects of departures from the modeling assumptions, including exponential terminal time and linear NPI implementation cost. RESULTS: An optimal policy is derived for the control model using a linear NPI implementation cost. Linear cost leads to a "bang-bang" policy in which NPIs are applied at maximum strength when certain state criteria are met. Multivariate sensitivity analyses are presented which indicate that NPI cost, death rate, and recovery rate are influential in determining the policy structure. Further death rate, basic reproductive number and recovery rate are the most influential in determining the expected cumulative death. When applying the NPI policy, the cumulative deaths under exponential and gamma terminal times are close, which implies that the outcome of applying the "bang-bang" policy is insensitive to the exponential assumption. Quadratic cost leads to a multi-level policy in which NPIs are applied at varying strength levels, again based on certain state criteria. Results indicate that linear cost leads to more costly implementation resulting in fewer deaths. CONCLUSIONS: The application of optimal control theory can provide valuable insight to developing effective control strategies for pandemic. Our findings highlight the importance of establishing a sensitive and timely surveillance system for pandemic preparedness. |
format | Text |
id | pubmed-2850906 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2010 |
publisher | BioMed Central |
record_format | MEDLINE/PubMed |
spelling | pubmed-28509062010-04-08 An optimal control theory approach to non-pharmaceutical interventions Lin, Feng Muthuraman, Kumar Lawley, Mark BMC Infect Dis Technical Advance BACKGROUND: Non-pharmaceutical interventions (NPI) are the first line of defense against pandemic influenza. These interventions dampen virus spread by reducing contact between infected and susceptible persons. Because they curtail essential societal activities, they must be applied judiciously. Optimal control theory is an approach for modeling and balancing competing objectives such as epidemic spread and NPI cost. METHODS: We apply optimal control on an epidemiologic compartmental model to develop triggers for NPI implementation. The objective is to minimize expected person-days lost from influenza related deaths and NPI implementations for the model. We perform a multivariate sensitivity analysis based on Latin Hypercube Sampling to study the effects of input parameters on the optimal control policy. Additional studies investigated the effects of departures from the modeling assumptions, including exponential terminal time and linear NPI implementation cost. RESULTS: An optimal policy is derived for the control model using a linear NPI implementation cost. Linear cost leads to a "bang-bang" policy in which NPIs are applied at maximum strength when certain state criteria are met. Multivariate sensitivity analyses are presented which indicate that NPI cost, death rate, and recovery rate are influential in determining the policy structure. Further death rate, basic reproductive number and recovery rate are the most influential in determining the expected cumulative death. When applying the NPI policy, the cumulative deaths under exponential and gamma terminal times are close, which implies that the outcome of applying the "bang-bang" policy is insensitive to the exponential assumption. Quadratic cost leads to a multi-level policy in which NPIs are applied at varying strength levels, again based on certain state criteria. Results indicate that linear cost leads to more costly implementation resulting in fewer deaths. CONCLUSIONS: The application of optimal control theory can provide valuable insight to developing effective control strategies for pandemic. Our findings highlight the importance of establishing a sensitive and timely surveillance system for pandemic preparedness. BioMed Central 2010-02-19 /pmc/articles/PMC2850906/ /pubmed/20170501 http://dx.doi.org/10.1186/1471-2334-10-32 Text en Copyright ©2010 Lin et al; licensee BioMed Central Ltd. http://creativecommons.org/licenses/by/2.0 This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. |
spellingShingle | Technical Advance Lin, Feng Muthuraman, Kumar Lawley, Mark An optimal control theory approach to non-pharmaceutical interventions |
title | An optimal control theory approach to non-pharmaceutical interventions |
title_full | An optimal control theory approach to non-pharmaceutical interventions |
title_fullStr | An optimal control theory approach to non-pharmaceutical interventions |
title_full_unstemmed | An optimal control theory approach to non-pharmaceutical interventions |
title_short | An optimal control theory approach to non-pharmaceutical interventions |
title_sort | optimal control theory approach to non-pharmaceutical interventions |
topic | Technical Advance |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2850906/ https://www.ncbi.nlm.nih.gov/pubmed/20170501 http://dx.doi.org/10.1186/1471-2334-10-32 |
work_keys_str_mv | AT linfeng anoptimalcontroltheoryapproachtononpharmaceuticalinterventions AT muthuramankumar anoptimalcontroltheoryapproachtononpharmaceuticalinterventions AT lawleymark anoptimalcontroltheoryapproachtononpharmaceuticalinterventions AT linfeng optimalcontroltheoryapproachtononpharmaceuticalinterventions AT muthuramankumar optimalcontroltheoryapproachtononpharmaceuticalinterventions AT lawleymark optimalcontroltheoryapproachtononpharmaceuticalinterventions |