Cargando…

An optimal control theory approach to non-pharmaceutical interventions

BACKGROUND: Non-pharmaceutical interventions (NPI) are the first line of defense against pandemic influenza. These interventions dampen virus spread by reducing contact between infected and susceptible persons. Because they curtail essential societal activities, they must be applied judiciously. Opt...

Descripción completa

Detalles Bibliográficos
Autores principales: Lin, Feng, Muthuraman, Kumar, Lawley, Mark
Formato: Texto
Lenguaje:English
Publicado: BioMed Central 2010
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2850906/
https://www.ncbi.nlm.nih.gov/pubmed/20170501
http://dx.doi.org/10.1186/1471-2334-10-32
_version_ 1782179819247632384
author Lin, Feng
Muthuraman, Kumar
Lawley, Mark
author_facet Lin, Feng
Muthuraman, Kumar
Lawley, Mark
author_sort Lin, Feng
collection PubMed
description BACKGROUND: Non-pharmaceutical interventions (NPI) are the first line of defense against pandemic influenza. These interventions dampen virus spread by reducing contact between infected and susceptible persons. Because they curtail essential societal activities, they must be applied judiciously. Optimal control theory is an approach for modeling and balancing competing objectives such as epidemic spread and NPI cost. METHODS: We apply optimal control on an epidemiologic compartmental model to develop triggers for NPI implementation. The objective is to minimize expected person-days lost from influenza related deaths and NPI implementations for the model. We perform a multivariate sensitivity analysis based on Latin Hypercube Sampling to study the effects of input parameters on the optimal control policy. Additional studies investigated the effects of departures from the modeling assumptions, including exponential terminal time and linear NPI implementation cost. RESULTS: An optimal policy is derived for the control model using a linear NPI implementation cost. Linear cost leads to a "bang-bang" policy in which NPIs are applied at maximum strength when certain state criteria are met. Multivariate sensitivity analyses are presented which indicate that NPI cost, death rate, and recovery rate are influential in determining the policy structure. Further death rate, basic reproductive number and recovery rate are the most influential in determining the expected cumulative death. When applying the NPI policy, the cumulative deaths under exponential and gamma terminal times are close, which implies that the outcome of applying the "bang-bang" policy is insensitive to the exponential assumption. Quadratic cost leads to a multi-level policy in which NPIs are applied at varying strength levels, again based on certain state criteria. Results indicate that linear cost leads to more costly implementation resulting in fewer deaths. CONCLUSIONS: The application of optimal control theory can provide valuable insight to developing effective control strategies for pandemic. Our findings highlight the importance of establishing a sensitive and timely surveillance system for pandemic preparedness.
format Text
id pubmed-2850906
institution National Center for Biotechnology Information
language English
publishDate 2010
publisher BioMed Central
record_format MEDLINE/PubMed
spelling pubmed-28509062010-04-08 An optimal control theory approach to non-pharmaceutical interventions Lin, Feng Muthuraman, Kumar Lawley, Mark BMC Infect Dis Technical Advance BACKGROUND: Non-pharmaceutical interventions (NPI) are the first line of defense against pandemic influenza. These interventions dampen virus spread by reducing contact between infected and susceptible persons. Because they curtail essential societal activities, they must be applied judiciously. Optimal control theory is an approach for modeling and balancing competing objectives such as epidemic spread and NPI cost. METHODS: We apply optimal control on an epidemiologic compartmental model to develop triggers for NPI implementation. The objective is to minimize expected person-days lost from influenza related deaths and NPI implementations for the model. We perform a multivariate sensitivity analysis based on Latin Hypercube Sampling to study the effects of input parameters on the optimal control policy. Additional studies investigated the effects of departures from the modeling assumptions, including exponential terminal time and linear NPI implementation cost. RESULTS: An optimal policy is derived for the control model using a linear NPI implementation cost. Linear cost leads to a "bang-bang" policy in which NPIs are applied at maximum strength when certain state criteria are met. Multivariate sensitivity analyses are presented which indicate that NPI cost, death rate, and recovery rate are influential in determining the policy structure. Further death rate, basic reproductive number and recovery rate are the most influential in determining the expected cumulative death. When applying the NPI policy, the cumulative deaths under exponential and gamma terminal times are close, which implies that the outcome of applying the "bang-bang" policy is insensitive to the exponential assumption. Quadratic cost leads to a multi-level policy in which NPIs are applied at varying strength levels, again based on certain state criteria. Results indicate that linear cost leads to more costly implementation resulting in fewer deaths. CONCLUSIONS: The application of optimal control theory can provide valuable insight to developing effective control strategies for pandemic. Our findings highlight the importance of establishing a sensitive and timely surveillance system for pandemic preparedness. BioMed Central 2010-02-19 /pmc/articles/PMC2850906/ /pubmed/20170501 http://dx.doi.org/10.1186/1471-2334-10-32 Text en Copyright ©2010 Lin et al; licensee BioMed Central Ltd. http://creativecommons.org/licenses/by/2.0 This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
spellingShingle Technical Advance
Lin, Feng
Muthuraman, Kumar
Lawley, Mark
An optimal control theory approach to non-pharmaceutical interventions
title An optimal control theory approach to non-pharmaceutical interventions
title_full An optimal control theory approach to non-pharmaceutical interventions
title_fullStr An optimal control theory approach to non-pharmaceutical interventions
title_full_unstemmed An optimal control theory approach to non-pharmaceutical interventions
title_short An optimal control theory approach to non-pharmaceutical interventions
title_sort optimal control theory approach to non-pharmaceutical interventions
topic Technical Advance
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2850906/
https://www.ncbi.nlm.nih.gov/pubmed/20170501
http://dx.doi.org/10.1186/1471-2334-10-32
work_keys_str_mv AT linfeng anoptimalcontroltheoryapproachtononpharmaceuticalinterventions
AT muthuramankumar anoptimalcontroltheoryapproachtononpharmaceuticalinterventions
AT lawleymark anoptimalcontroltheoryapproachtononpharmaceuticalinterventions
AT linfeng optimalcontroltheoryapproachtononpharmaceuticalinterventions
AT muthuramankumar optimalcontroltheoryapproachtononpharmaceuticalinterventions
AT lawleymark optimalcontroltheoryapproachtononpharmaceuticalinterventions