Cargando…
Estimation of the applicability domain of kernel-based machine learning models for virtual screening
BACKGROUND: The virtual screening of large compound databases is an important application of structural-activity relationship models. Due to the high structural diversity of these data sets, it is impossible for machine learning based QSAR models, which rely on a specific training set, to give relia...
Autores principales: | Fechner, Nikolas, Jahn, Andreas, Hinselmann, Georg, Zell, Andreas |
---|---|
Formato: | Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2010
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2851576/ https://www.ncbi.nlm.nih.gov/pubmed/20222949 http://dx.doi.org/10.1186/1758-2946-2-2 |
Ejemplares similares
-
Kernel-based estimation of the applicability domain of QSAR models
por: Fechner, Nikolas, et al.
Publicado: (2010) -
Optimal assignment methods for ligand-based virtual screening
por: Jahn, Andreas, et al.
Publicado: (2009) -
Estimating the applicability domain of kernel based QSPR models using classical descriptor vectors
por: Fechner, NH, et al.
Publicado: (2008) -
Efficient extraction of canonical spatial relationships using a recursive enumeration of k-subsets
por: Hinselmann, Georg, et al.
Publicado: (2010) -
Automatic pharmacophore model generation using weighted substructure assignments
por: Jahn, Andreas, et al.
Publicado: (2010)