Cargando…
Examination of the efficacy of acute L-alanyl-L-glutamine ingestion during hydration stress in endurance exercise
BACKGROUND: The effect of acute L-alanyl-L-glutamine (AG; Sustamine™) ingestion on performance changes and markers of fluid regulation, immune, inflammatory, oxidative stress, and recovery was examined in response to exhaustive endurance exercise, during and in the absence of dehydration. METHODS: T...
Autores principales: | , , , , , , , , , , , , , |
---|---|
Formato: | Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2010
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2851582/ https://www.ncbi.nlm.nih.gov/pubmed/20181080 http://dx.doi.org/10.1186/1550-2783-7-8 |
_version_ | 1782179876495687680 |
---|---|
author | Hoffman, Jay R Ratamess, Nicholas A Kang, Jie Rashti, Stephanie L Kelly, Neil Gonzalez, Adam M Stec, Michael Anderson, Steven Bailey, Brooke L Yamamoto, Linda M Hom, Lindsay L Kupchak, Brian R Faigenbaum, Avery D Maresh, Carl M |
author_facet | Hoffman, Jay R Ratamess, Nicholas A Kang, Jie Rashti, Stephanie L Kelly, Neil Gonzalez, Adam M Stec, Michael Anderson, Steven Bailey, Brooke L Yamamoto, Linda M Hom, Lindsay L Kupchak, Brian R Faigenbaum, Avery D Maresh, Carl M |
author_sort | Hoffman, Jay R |
collection | PubMed |
description | BACKGROUND: The effect of acute L-alanyl-L-glutamine (AG; Sustamine™) ingestion on performance changes and markers of fluid regulation, immune, inflammatory, oxidative stress, and recovery was examined in response to exhaustive endurance exercise, during and in the absence of dehydration. METHODS: Ten physically active males (20.8 ± 0.6 y; 176.8 ± 7.2 cm; 77.4 ± 10.5 kg; 12.3 ± 4.6% body fat) volunteered to participate in this study. During the first visit (T1) subjects reported to the laboratory in a euhydrated state to provide a baseline (BL) blood draw and perform a maximal exercise test. In the four subsequent randomly ordered trials, subjects dehydrated to -2.5% of their baseline body mass. For T2, subjects achieved their goal weight and were not rehydrated. During T3 - T5, subjects reached their goal weight and then rehydrated to 1.5% of their baseline body mass by drinking either water (T3) or two different doses (T4 and T5) of the AG supplement (0.05 g·kg(-1 )and 0.2 g·kg(-1), respectively). Subjects then exercised at a workload that elicited 75% of their VO(2 )max on a cycle ergometer. During T2 - T5 blood draws occurred once goal body mass was achieved (DHY), immediately prior to the exercise stress (RHY), and immediately following the exercise protocol (IP). Resting 24 hour (24P) blood samples were also obtained. Blood samples were analyzed for glutamine, potassium, sodium, aldosterone, arginine vasopressin (AVP), C-reactive protein (CRP), interleukin-6 (IL-6), malondialdehyde (MDA), testosterone, cortisol, ACTH, growth hormone and creatine kinase. Statistical evaluation of performance, hormonal and biochemical changes was accomplished using a repeated measures analysis of variance. RESULTS: Glutamine concentrations for T5 were significantly higher at RHY and IP than T2 - T4. When examining performance changes (difference between T2 - T5 and T1), significantly greater times to exhaustion occurred during T4 (130.2 ± 340.2 sec) and T5 (157.4 ± 263.1 sec) compared to T2 (455.6 ± 245.0 sec). Plasma sodium concentrations were greater (p < 0.05) at RHY and IP for T2 than all other trials. Aldosterone concentrations at RHY and IP were significantly lower than that at BL and DHY. AVP was significantly elevated at DHY, RHY and IP compared to BL measures. No significant differences were observed between trials in CRP, IL-6, MDA, or in any of the other hormonal or biochemical measures. CONCLUSION: Results demonstrate that AG supplementation provided a significant ergogenic benefit by increasing time to exhaustion during a mild hydration stress. This ergogenic effect was likely mediated by an enhanced fluid and electrolyte uptake. |
format | Text |
id | pubmed-2851582 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2010 |
publisher | BioMed Central |
record_format | MEDLINE/PubMed |
spelling | pubmed-28515822010-04-09 Examination of the efficacy of acute L-alanyl-L-glutamine ingestion during hydration stress in endurance exercise Hoffman, Jay R Ratamess, Nicholas A Kang, Jie Rashti, Stephanie L Kelly, Neil Gonzalez, Adam M Stec, Michael Anderson, Steven Bailey, Brooke L Yamamoto, Linda M Hom, Lindsay L Kupchak, Brian R Faigenbaum, Avery D Maresh, Carl M J Int Soc Sports Nutr Research article BACKGROUND: The effect of acute L-alanyl-L-glutamine (AG; Sustamine™) ingestion on performance changes and markers of fluid regulation, immune, inflammatory, oxidative stress, and recovery was examined in response to exhaustive endurance exercise, during and in the absence of dehydration. METHODS: Ten physically active males (20.8 ± 0.6 y; 176.8 ± 7.2 cm; 77.4 ± 10.5 kg; 12.3 ± 4.6% body fat) volunteered to participate in this study. During the first visit (T1) subjects reported to the laboratory in a euhydrated state to provide a baseline (BL) blood draw and perform a maximal exercise test. In the four subsequent randomly ordered trials, subjects dehydrated to -2.5% of their baseline body mass. For T2, subjects achieved their goal weight and were not rehydrated. During T3 - T5, subjects reached their goal weight and then rehydrated to 1.5% of their baseline body mass by drinking either water (T3) or two different doses (T4 and T5) of the AG supplement (0.05 g·kg(-1 )and 0.2 g·kg(-1), respectively). Subjects then exercised at a workload that elicited 75% of their VO(2 )max on a cycle ergometer. During T2 - T5 blood draws occurred once goal body mass was achieved (DHY), immediately prior to the exercise stress (RHY), and immediately following the exercise protocol (IP). Resting 24 hour (24P) blood samples were also obtained. Blood samples were analyzed for glutamine, potassium, sodium, aldosterone, arginine vasopressin (AVP), C-reactive protein (CRP), interleukin-6 (IL-6), malondialdehyde (MDA), testosterone, cortisol, ACTH, growth hormone and creatine kinase. Statistical evaluation of performance, hormonal and biochemical changes was accomplished using a repeated measures analysis of variance. RESULTS: Glutamine concentrations for T5 were significantly higher at RHY and IP than T2 - T4. When examining performance changes (difference between T2 - T5 and T1), significantly greater times to exhaustion occurred during T4 (130.2 ± 340.2 sec) and T5 (157.4 ± 263.1 sec) compared to T2 (455.6 ± 245.0 sec). Plasma sodium concentrations were greater (p < 0.05) at RHY and IP for T2 than all other trials. Aldosterone concentrations at RHY and IP were significantly lower than that at BL and DHY. AVP was significantly elevated at DHY, RHY and IP compared to BL measures. No significant differences were observed between trials in CRP, IL-6, MDA, or in any of the other hormonal or biochemical measures. CONCLUSION: Results demonstrate that AG supplementation provided a significant ergogenic benefit by increasing time to exhaustion during a mild hydration stress. This ergogenic effect was likely mediated by an enhanced fluid and electrolyte uptake. BioMed Central 2010-02-03 /pmc/articles/PMC2851582/ /pubmed/20181080 http://dx.doi.org/10.1186/1550-2783-7-8 Text en Copyright ©2010 Hoffman et al; licensee BioMed Central Ltd. http://creativecommons.org/licenses/by/2.0 This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. |
spellingShingle | Research article Hoffman, Jay R Ratamess, Nicholas A Kang, Jie Rashti, Stephanie L Kelly, Neil Gonzalez, Adam M Stec, Michael Anderson, Steven Bailey, Brooke L Yamamoto, Linda M Hom, Lindsay L Kupchak, Brian R Faigenbaum, Avery D Maresh, Carl M Examination of the efficacy of acute L-alanyl-L-glutamine ingestion during hydration stress in endurance exercise |
title | Examination of the efficacy of acute L-alanyl-L-glutamine ingestion during hydration stress in endurance exercise |
title_full | Examination of the efficacy of acute L-alanyl-L-glutamine ingestion during hydration stress in endurance exercise |
title_fullStr | Examination of the efficacy of acute L-alanyl-L-glutamine ingestion during hydration stress in endurance exercise |
title_full_unstemmed | Examination of the efficacy of acute L-alanyl-L-glutamine ingestion during hydration stress in endurance exercise |
title_short | Examination of the efficacy of acute L-alanyl-L-glutamine ingestion during hydration stress in endurance exercise |
title_sort | examination of the efficacy of acute l-alanyl-l-glutamine ingestion during hydration stress in endurance exercise |
topic | Research article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2851582/ https://www.ncbi.nlm.nih.gov/pubmed/20181080 http://dx.doi.org/10.1186/1550-2783-7-8 |
work_keys_str_mv | AT hoffmanjayr examinationoftheefficacyofacutelalanyllglutamineingestionduringhydrationstressinenduranceexercise AT ratamessnicholasa examinationoftheefficacyofacutelalanyllglutamineingestionduringhydrationstressinenduranceexercise AT kangjie examinationoftheefficacyofacutelalanyllglutamineingestionduringhydrationstressinenduranceexercise AT rashtistephaniel examinationoftheefficacyofacutelalanyllglutamineingestionduringhydrationstressinenduranceexercise AT kellyneil examinationoftheefficacyofacutelalanyllglutamineingestionduringhydrationstressinenduranceexercise AT gonzalezadamm examinationoftheefficacyofacutelalanyllglutamineingestionduringhydrationstressinenduranceexercise AT stecmichael examinationoftheefficacyofacutelalanyllglutamineingestionduringhydrationstressinenduranceexercise AT andersonsteven examinationoftheefficacyofacutelalanyllglutamineingestionduringhydrationstressinenduranceexercise AT baileybrookel examinationoftheefficacyofacutelalanyllglutamineingestionduringhydrationstressinenduranceexercise AT yamamotolindam examinationoftheefficacyofacutelalanyllglutamineingestionduringhydrationstressinenduranceexercise AT homlindsayl examinationoftheefficacyofacutelalanyllglutamineingestionduringhydrationstressinenduranceexercise AT kupchakbrianr examinationoftheefficacyofacutelalanyllglutamineingestionduringhydrationstressinenduranceexercise AT faigenbaumaveryd examinationoftheefficacyofacutelalanyllglutamineingestionduringhydrationstressinenduranceexercise AT mareshcarlm examinationoftheefficacyofacutelalanyllglutamineingestionduringhydrationstressinenduranceexercise |