Cargando…
Identification of recurrent regions of copy-number variants across multiple individuals
BACKGROUND: Algorithms and software for CNV detection have been developed, but they detect the CNV regions sample-by-sample with individual-specific breakpoints, while common CNV regions are likely to occur at the same genomic locations across different individuals in a homogenous population. Curren...
Autores principales: | , , , , , |
---|---|
Formato: | Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2010
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2851607/ https://www.ncbi.nlm.nih.gov/pubmed/20307285 http://dx.doi.org/10.1186/1471-2105-11-147 |
_version_ | 1782179882540728320 |
---|---|
author | Mei, Teo Shu Salim, Agus Calza, Stefano Seng, Ku Chee Seng, Chia Kee Pawitan, Yudi |
author_facet | Mei, Teo Shu Salim, Agus Calza, Stefano Seng, Ku Chee Seng, Chia Kee Pawitan, Yudi |
author_sort | Mei, Teo Shu |
collection | PubMed |
description | BACKGROUND: Algorithms and software for CNV detection have been developed, but they detect the CNV regions sample-by-sample with individual-specific breakpoints, while common CNV regions are likely to occur at the same genomic locations across different individuals in a homogenous population. Current algorithms to detect common CNV regions do not account for the varying reliability of the individual CNVs, typically reported as confidence scores by SNP-based CNV detection algorithms. General methodologies for identifying these recurrent regions, especially those directed at SNP arrays, are still needed. RESULTS: In this paper, we describe two new approaches for identifying common CNV regions based on (i) the frequency of occurrence of reliable CNVs, where reliability is determined by high confidence scores, and (ii) a weighted frequency of occurrence of CNVs, where the weights are determined by the confidence scores. In addition, motivated by the fact that we often observe partially overlapping CNV regions as a mixture of two or more distinct subregions, regions identified using the two approaches can be fine-tuned to smaller sub-regions using a clustering algorithm. We compared the performance of the methods with sequencing-based results in terms of discordance rates, rates of departure from Hardy-Weinberg equilibrium (HWE) and average frequency and size of the identified regions. The discordance rates as well as the rates of departure from HWE decrease when we select CNVs with higher confidence scores. We also performed comparisons with two previously published methods, STAC and GISTIC, and showed that the methods we consider are better at identifying low-frequency but high-confidence CNV regions. CONCLUSIONS: The proposed methods for identifying common CNV regions in multiple individuals perform well compared to existing methods. The identified common regions can be used for downstream analyses such as group comparisons in association studies. |
format | Text |
id | pubmed-2851607 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2010 |
publisher | BioMed Central |
record_format | MEDLINE/PubMed |
spelling | pubmed-28516072010-04-09 Identification of recurrent regions of copy-number variants across multiple individuals Mei, Teo Shu Salim, Agus Calza, Stefano Seng, Ku Chee Seng, Chia Kee Pawitan, Yudi BMC Bioinformatics Research article BACKGROUND: Algorithms and software for CNV detection have been developed, but they detect the CNV regions sample-by-sample with individual-specific breakpoints, while common CNV regions are likely to occur at the same genomic locations across different individuals in a homogenous population. Current algorithms to detect common CNV regions do not account for the varying reliability of the individual CNVs, typically reported as confidence scores by SNP-based CNV detection algorithms. General methodologies for identifying these recurrent regions, especially those directed at SNP arrays, are still needed. RESULTS: In this paper, we describe two new approaches for identifying common CNV regions based on (i) the frequency of occurrence of reliable CNVs, where reliability is determined by high confidence scores, and (ii) a weighted frequency of occurrence of CNVs, where the weights are determined by the confidence scores. In addition, motivated by the fact that we often observe partially overlapping CNV regions as a mixture of two or more distinct subregions, regions identified using the two approaches can be fine-tuned to smaller sub-regions using a clustering algorithm. We compared the performance of the methods with sequencing-based results in terms of discordance rates, rates of departure from Hardy-Weinberg equilibrium (HWE) and average frequency and size of the identified regions. The discordance rates as well as the rates of departure from HWE decrease when we select CNVs with higher confidence scores. We also performed comparisons with two previously published methods, STAC and GISTIC, and showed that the methods we consider are better at identifying low-frequency but high-confidence CNV regions. CONCLUSIONS: The proposed methods for identifying common CNV regions in multiple individuals perform well compared to existing methods. The identified common regions can be used for downstream analyses such as group comparisons in association studies. BioMed Central 2010-03-22 /pmc/articles/PMC2851607/ /pubmed/20307285 http://dx.doi.org/10.1186/1471-2105-11-147 Text en Copyright ©2010 Mei et al; licensee BioMed Central Ltd. http://creativecommons.org/licenses/by/2.0 This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. |
spellingShingle | Research article Mei, Teo Shu Salim, Agus Calza, Stefano Seng, Ku Chee Seng, Chia Kee Pawitan, Yudi Identification of recurrent regions of copy-number variants across multiple individuals |
title | Identification of recurrent regions of copy-number variants across multiple individuals |
title_full | Identification of recurrent regions of copy-number variants across multiple individuals |
title_fullStr | Identification of recurrent regions of copy-number variants across multiple individuals |
title_full_unstemmed | Identification of recurrent regions of copy-number variants across multiple individuals |
title_short | Identification of recurrent regions of copy-number variants across multiple individuals |
title_sort | identification of recurrent regions of copy-number variants across multiple individuals |
topic | Research article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2851607/ https://www.ncbi.nlm.nih.gov/pubmed/20307285 http://dx.doi.org/10.1186/1471-2105-11-147 |
work_keys_str_mv | AT meiteoshu identificationofrecurrentregionsofcopynumbervariantsacrossmultipleindividuals AT salimagus identificationofrecurrentregionsofcopynumbervariantsacrossmultipleindividuals AT calzastefano identificationofrecurrentregionsofcopynumbervariantsacrossmultipleindividuals AT sengkuchee identificationofrecurrentregionsofcopynumbervariantsacrossmultipleindividuals AT sengchiakee identificationofrecurrentregionsofcopynumbervariantsacrossmultipleindividuals AT pawitanyudi identificationofrecurrentregionsofcopynumbervariantsacrossmultipleindividuals |