Cargando…

Design and In Vitro Characterization of Buccoadhesive Drug Delivery System of Insulin

A buccoadhesive drug delivery system of Insulin was prepared by solvent casting technique and characterized in vitro by surface pH, bioadhesive strength, drug release and skin permeation studies. Sodium carboxymethylcellulose-DVP was chosen as the controlled release matrix polymer. The optimized for...

Descripción completa

Detalles Bibliográficos
Autores principales: Sahni, J., Raj, S., Ahmad, F. J., Khar, R. K.
Formato: Texto
Lenguaje:English
Publicado: Medknow Publications 2008
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2852063/
https://www.ncbi.nlm.nih.gov/pubmed/20390082
http://dx.doi.org/10.4103/0250-474X.40333
Descripción
Sumario:A buccoadhesive drug delivery system of Insulin was prepared by solvent casting technique and characterized in vitro by surface pH, bioadhesive strength, drug release and skin permeation studies. Sodium carboxymethylcellulose-DVP was chosen as the controlled release matrix polymer. The optimized formulation J(4) contained Sodium carboxy methyl cellulose-DVP 2% (w/v), insulin (50 IU/film), propylene glycol (0.25 ml) and Isopropyl alcohol: water (1:4) as solvent system. Bioadhesive strength of the prepared patches was measured on a modified physical balance using bovine cheek pouch as the model membrane. In vitro release studies were carried out at 37 ± 2° using phosphate buffer pH 6.6, in a modified dissolution apparatus fabricated for the purpose. Cumulative amount of drug released from the optimized formulation J(4) was 91.64% in 6 hours. In vitro permeation studies were carried out on J(4) at 37 ± 2° using Franz diffusion cell. Cumulative amount of drug permeated from J(4) was 6.63% in 6 hours. In order to enhance the permeation of protein drug, different permeation enhancers were evaluated. The results suggested that sodium deoxycholate 5% (w/v) was the best permeation enhancer among those evaluated. It enhanced the permeation of insulin from 6.63% to 10.38% over a period of 6 hours. The optimized patches were also satisfactory in terms of surface pH and bioadhesive strength. It can also be easily concluded that the system is a success as compared to the conventional formulations with respect to invasiveness, requirement of trained persons for administration and most importantly, the first pass metabolism.