Cargando…
Modular Insulators: Genome Wide Search for Composite CTCF/Thyroid Hormone Receptor Binding Sites
The conserved 11 zinc-finger protein CTCF is involved in several transcriptional mechanisms, including insulation and enhancer blocking. We had previously identified two composite elements consisting of a CTCF and a TR binding site at the chicken lysozyme and the human c-myc genes. Using these it ha...
Autores principales: | , , , , , |
---|---|
Formato: | Texto |
Lenguaje: | English |
Publicado: |
Public Library of Science
2010
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2852416/ https://www.ncbi.nlm.nih.gov/pubmed/20404925 http://dx.doi.org/10.1371/journal.pone.0010119 |
_version_ | 1782179940666441728 |
---|---|
author | Weth, Oliver Weth, Christine Bartkuhn, Marek Leers, Joerg Uhle, Florian Renkawitz, Rainer |
author_facet | Weth, Oliver Weth, Christine Bartkuhn, Marek Leers, Joerg Uhle, Florian Renkawitz, Rainer |
author_sort | Weth, Oliver |
collection | PubMed |
description | The conserved 11 zinc-finger protein CTCF is involved in several transcriptional mechanisms, including insulation and enhancer blocking. We had previously identified two composite elements consisting of a CTCF and a TR binding site at the chicken lysozyme and the human c-myc genes. Using these it has been demonstrated that thyroid hormone mediates the relief of enhancer blocking even though CTCF remains bound to its binding site. Here we wished to determine whether CTCF and TR combined sites are representative of a general feature of the genome, and whether such sites are functional in regulating enhancer blocking. Genome wide analysis revealed that about 18% of the CTCF regions harbored at least one of the four different palindromic or repeated sequence arrangements typical for the binding of TR homodimers or TR/RXR heterodimers. Functional analysis of 10 different composite elements of thyroid hormone responsive genes was performed using episomal constructs. The episomal system allowed recapitulating CTCF mediated enhancer blocking function to be dependent on poly (ADP)-ribose modification and to mediate histone deacetylation. Furthermore, thyroid hormone sensitive enhancer blocking could be shown for one of these new composite elements. Remarkably, not only did the regulation of enhancer blocking require functional TR binding, but also the basal enhancer blocking activity of CTCF was dependent on the binding of the unliganded TR. Thus, a number of composite CTCF/TR binding sites may represent a subset of other modular CTCF composite sites, such as groups of multiple CTCF sites or of CTCF/Oct4, CTCF/Kaiso or CTCF/Yy1 combinations. |
format | Text |
id | pubmed-2852416 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2010 |
publisher | Public Library of Science |
record_format | MEDLINE/PubMed |
spelling | pubmed-28524162010-04-19 Modular Insulators: Genome Wide Search for Composite CTCF/Thyroid Hormone Receptor Binding Sites Weth, Oliver Weth, Christine Bartkuhn, Marek Leers, Joerg Uhle, Florian Renkawitz, Rainer PLoS One Research Article The conserved 11 zinc-finger protein CTCF is involved in several transcriptional mechanisms, including insulation and enhancer blocking. We had previously identified two composite elements consisting of a CTCF and a TR binding site at the chicken lysozyme and the human c-myc genes. Using these it has been demonstrated that thyroid hormone mediates the relief of enhancer blocking even though CTCF remains bound to its binding site. Here we wished to determine whether CTCF and TR combined sites are representative of a general feature of the genome, and whether such sites are functional in regulating enhancer blocking. Genome wide analysis revealed that about 18% of the CTCF regions harbored at least one of the four different palindromic or repeated sequence arrangements typical for the binding of TR homodimers or TR/RXR heterodimers. Functional analysis of 10 different composite elements of thyroid hormone responsive genes was performed using episomal constructs. The episomal system allowed recapitulating CTCF mediated enhancer blocking function to be dependent on poly (ADP)-ribose modification and to mediate histone deacetylation. Furthermore, thyroid hormone sensitive enhancer blocking could be shown for one of these new composite elements. Remarkably, not only did the regulation of enhancer blocking require functional TR binding, but also the basal enhancer blocking activity of CTCF was dependent on the binding of the unliganded TR. Thus, a number of composite CTCF/TR binding sites may represent a subset of other modular CTCF composite sites, such as groups of multiple CTCF sites or of CTCF/Oct4, CTCF/Kaiso or CTCF/Yy1 combinations. Public Library of Science 2010-04-09 /pmc/articles/PMC2852416/ /pubmed/20404925 http://dx.doi.org/10.1371/journal.pone.0010119 Text en Weth et al. http://creativecommons.org/licenses/by/4.0/ This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are properly credited. |
spellingShingle | Research Article Weth, Oliver Weth, Christine Bartkuhn, Marek Leers, Joerg Uhle, Florian Renkawitz, Rainer Modular Insulators: Genome Wide Search for Composite CTCF/Thyroid Hormone Receptor Binding Sites |
title | Modular Insulators: Genome Wide Search for Composite CTCF/Thyroid Hormone Receptor Binding Sites |
title_full | Modular Insulators: Genome Wide Search for Composite CTCF/Thyroid Hormone Receptor Binding Sites |
title_fullStr | Modular Insulators: Genome Wide Search for Composite CTCF/Thyroid Hormone Receptor Binding Sites |
title_full_unstemmed | Modular Insulators: Genome Wide Search for Composite CTCF/Thyroid Hormone Receptor Binding Sites |
title_short | Modular Insulators: Genome Wide Search for Composite CTCF/Thyroid Hormone Receptor Binding Sites |
title_sort | modular insulators: genome wide search for composite ctcf/thyroid hormone receptor binding sites |
topic | Research Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2852416/ https://www.ncbi.nlm.nih.gov/pubmed/20404925 http://dx.doi.org/10.1371/journal.pone.0010119 |
work_keys_str_mv | AT wetholiver modularinsulatorsgenomewidesearchforcompositectcfthyroidhormonereceptorbindingsites AT wethchristine modularinsulatorsgenomewidesearchforcompositectcfthyroidhormonereceptorbindingsites AT bartkuhnmarek modularinsulatorsgenomewidesearchforcompositectcfthyroidhormonereceptorbindingsites AT leersjoerg modularinsulatorsgenomewidesearchforcompositectcfthyroidhormonereceptorbindingsites AT uhleflorian modularinsulatorsgenomewidesearchforcompositectcfthyroidhormonereceptorbindingsites AT renkawitzrainer modularinsulatorsgenomewidesearchforcompositectcfthyroidhormonereceptorbindingsites |