Cargando…

Different Members of a Simple Three-Helix Bundle Protein Family Have Very Different Folding Rate Constants and Fold by Different Mechanisms

The 15th, 16th, and 17th repeats of chicken brain α-spectrin (R15, R16, and R17, respectively) are very similar in terms of structure and stability. However, R15 folds and unfolds 3 orders of magnitude faster than R16 and R17. This is unexpected. The rate-limiting transition state for R15 folding is...

Descripción completa

Detalles Bibliográficos
Autores principales: Wensley, Beth G., Gärtner, Martina, Choo, Wan Xian, Batey, Sarah, Clarke, Jane
Formato: Texto
Lenguaje:English
Publicado: Elsevier 2009
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2852649/
https://www.ncbi.nlm.nih.gov/pubmed/19445951
http://dx.doi.org/10.1016/j.jmb.2009.05.010
Descripción
Sumario:The 15th, 16th, and 17th repeats of chicken brain α-spectrin (R15, R16, and R17, respectively) are very similar in terms of structure and stability. However, R15 folds and unfolds 3 orders of magnitude faster than R16 and R17. This is unexpected. The rate-limiting transition state for R15 folding is investigated using protein engineering methods (Φ-value analysis) and compared with previously completed analyses of R16 and R17. Characterisation of many mutants suggests that all three proteins have similar complexity in the folding landscape. The early rate-limiting transition states of the three domains are similar in terms of overall structure, but there are significant differences in the patterns of Φ-values. R15 apparently folds via a nucleation–condensation mechanism, which involves concomitant folding and packing of the A- and C-helices, establishing the correct topology. R16 and R17 fold via a more framework-like mechanism, which may impede the search to find the correct packing of the helices, providing a possible explanation for the fast folding of R15.