Cargando…

The Effect of Single Nucleotide Polymorphisms from Genome Wide Association Studies in Multiple Sclerosis on Gene Expression

BACKGROUND: Multiple sclerosis (MS) is a complex neurological disorder. Its aetiology involves both environmental and genetic factors. Recent genome-wide association studies have identified a number of single nucleotide polymorphisms (SNPs) associated with susceptibility to (MS). We investigated whe...

Descripción completa

Detalles Bibliográficos
Autores principales: Handel, Adam E., Handunnetthi, Lahiru, Berlanga, Antonio J., Watson, Corey T., Morahan, Julia M., Ramagopalan, Sreeram V.
Formato: Texto
Lenguaje:English
Publicado: Public Library of Science 2010
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2854120/
https://www.ncbi.nlm.nih.gov/pubmed/20405052
http://dx.doi.org/10.1371/journal.pone.0010142
Descripción
Sumario:BACKGROUND: Multiple sclerosis (MS) is a complex neurological disorder. Its aetiology involves both environmental and genetic factors. Recent genome-wide association studies have identified a number of single nucleotide polymorphisms (SNPs) associated with susceptibility to (MS). We investigated whether these genetic variations were associated with alteration in gene expression. METHODS/PRINCIPAL FINDINGS: We used a database of mRNA expression and genetic variation derived from immortalised peripheral lymphocytes to investigate polymorphisms associated with MS for correlation with gene expression. Several SNPs were found to be associated with changes in expression: in particular two with HLA-DQA1, HLA-DQA2, HLA-DQB1, HLA-DRB1, HLA-DRB4 and HLA-DRB5, one with ZFP57, one with CD58, two with IL7 and FAM164A, and one with FAM119B, TSFM and KUB3. We found minimal cross-over with a recent whole genome expression study in MS patients. DISCUSSION: We have shown that many susceptibility loci in MS are associated with changes in gene expression using an unbiased expression database. Several of these findings suggest novel gene candidates underlying the effects of MS-associated genetic variation.