Cargando…

Inhibitory “Noise”

Cortical neurons in vivo may operate in high-conductance states, in which the major part of the neuron's input conductance is due to synaptic activity, sometimes several-fold larger than the resting conductance. We examine here the contribution of inhibition in such high-conductance states. At...

Descripción completa

Detalles Bibliográficos
Autor principal: Destexhe, Alain
Formato: Texto
Lenguaje:English
Publicado: Frontiers Research Foundation 2010
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2854575/
https://www.ncbi.nlm.nih.gov/pubmed/20407587
http://dx.doi.org/10.3389/fncel.2010.00009
_version_ 1782180110587133952
author Destexhe, Alain
author_facet Destexhe, Alain
author_sort Destexhe, Alain
collection PubMed
description Cortical neurons in vivo may operate in high-conductance states, in which the major part of the neuron's input conductance is due to synaptic activity, sometimes several-fold larger than the resting conductance. We examine here the contribution of inhibition in such high-conductance states. At the level of the absolute conductance values, several studies have shown that cortical neurons in vivo are characterized by strong inhibitory conductances. However, conductances are balanced and spiking activity is mostly determined by fluctuations, but not much is known about excitatory and inhibitory contributions to these fluctuations. Models and dynamic-clamp experiments show that, during high-conductance states, spikes are mainly determined by fluctuations of inhibition, or by inhibitory “noise”. This stands in contrast to low-conductance states, in which excitatory conductances determine spiking activity. To determine these contributions from experimental data, maximum likelihood methods can be designed and applied to intracellular recordings in vivo. Such methods indicate that action potentials are indeed mostly correlated with inhibitory fluctuations in awake animals. These results argue for a determinant role for inhibitory fluctuations in evoking spikes, and do not support feed-forward modes of processing, for which opposite patterns are predicted.
format Text
id pubmed-2854575
institution National Center for Biotechnology Information
language English
publishDate 2010
publisher Frontiers Research Foundation
record_format MEDLINE/PubMed
spelling pubmed-28545752010-04-20 Inhibitory “Noise” Destexhe, Alain Front Cell Neurosci Neuroscience Cortical neurons in vivo may operate in high-conductance states, in which the major part of the neuron's input conductance is due to synaptic activity, sometimes several-fold larger than the resting conductance. We examine here the contribution of inhibition in such high-conductance states. At the level of the absolute conductance values, several studies have shown that cortical neurons in vivo are characterized by strong inhibitory conductances. However, conductances are balanced and spiking activity is mostly determined by fluctuations, but not much is known about excitatory and inhibitory contributions to these fluctuations. Models and dynamic-clamp experiments show that, during high-conductance states, spikes are mainly determined by fluctuations of inhibition, or by inhibitory “noise”. This stands in contrast to low-conductance states, in which excitatory conductances determine spiking activity. To determine these contributions from experimental data, maximum likelihood methods can be designed and applied to intracellular recordings in vivo. Such methods indicate that action potentials are indeed mostly correlated with inhibitory fluctuations in awake animals. These results argue for a determinant role for inhibitory fluctuations in evoking spikes, and do not support feed-forward modes of processing, for which opposite patterns are predicted. Frontiers Research Foundation 2010-03-31 /pmc/articles/PMC2854575/ /pubmed/20407587 http://dx.doi.org/10.3389/fncel.2010.00009 Text en Copyright © 2010 Destexhe. http://www.frontiersin.org/licenseagreement This is an open-access article subject to an exclusive license agreement between the authors and the Frontiers Research Foundation, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are credited.
spellingShingle Neuroscience
Destexhe, Alain
Inhibitory “Noise”
title Inhibitory “Noise”
title_full Inhibitory “Noise”
title_fullStr Inhibitory “Noise”
title_full_unstemmed Inhibitory “Noise”
title_short Inhibitory “Noise”
title_sort inhibitory “noise”
topic Neuroscience
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2854575/
https://www.ncbi.nlm.nih.gov/pubmed/20407587
http://dx.doi.org/10.3389/fncel.2010.00009
work_keys_str_mv AT destexhealain inhibitorynoise