Cargando…

Role of BCR-ABL-Y177 mediated p27kip1 phosphorylation and cytoplasmic localization in enhanced proliferation of chronic myeloid leukemia progenitors

In chronic myelogenous leukemia (CML) hematopoietic stem cell transformation leads to increased proliferation of malignant myeloid progenitors. The cyclin-dependent kinase inhibitor p27kip1 (p27) is a critical negative regulator of hematopoietic progenitor proliferation and pool size that is deregul...

Descripción completa

Detalles Bibliográficos
Autores principales: Chu, Su, McDonald, Tinisha, Bhatia, Ravi
Formato: Texto
Lenguaje:English
Publicado: 2010
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2854856/
https://www.ncbi.nlm.nih.gov/pubmed/20200561
http://dx.doi.org/10.1038/leu.2010.24
Descripción
Sumario:In chronic myelogenous leukemia (CML) hematopoietic stem cell transformation leads to increased proliferation of malignant myeloid progenitors. The cyclin-dependent kinase inhibitor p27kip1 (p27) is a critical negative regulator of hematopoietic progenitor proliferation and pool size that is deregulated in BCR-ABL expressing cell lines. However, cell-context specific regulation of p27 in primary human CML progenitors and its contribution to CML progenitor expansion remain unclear. Here we investigated p27 regulation and function in (1) CD34+ cells from CML patients and (2) human CD34+ cells ectopically expressing the BCR-ABL gene following retrovirus transduction. We found that p27 levels are increased in CML CD34+ cells related to a BCR-ABL dependent increase in p27 protein translation. However p27 was relocated to the cytoplasm in CML progenitors and nuclear p27 levels were reduced, allowing increased cell cycling and expansion in culture. Cytoplasmic relocation of p27 in CML progenitors was related to signaling through BCR-ABL Y177, activation of the AKT kinase and phosphorylation of p27 on Thr-157 (T157). Expression of a mutant p27 that cannot be phosphorylated on T157 significant inhibited CML progenitor proliferation. These studies demonstrate the importance of BCR-ABL-Y177-AKT mediated p27 phosphorylation in altered p27 localization and enhanced proliferation and expansion of primary CML progenitors.