Cargando…

Three dysregulated miRNAs control kallikrein 10 expression and cell proliferation in ovarian cancer

BACKGROUND: Kallikrein-related peptidases (KLKs) are a family of serine proteases that have been shown to be dysregulated in several malignancies including ovarian cancer. The control of kallikrein genes and their physiological function in cancer is not well understood. We hypothesized that microRNA...

Descripción completa

Detalles Bibliográficos
Autores principales: White, N M A, Chow, T-F F, Mejia-Guerrero, S, Diamandis, M, Rofael, Y, Faragalla, H, Mankaruous, M, Gabril, M, Girgis, A, Yousef, G M
Formato: Texto
Lenguaje:English
Publicado: Nature Publishing Group 2010
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2856011/
https://www.ncbi.nlm.nih.gov/pubmed/20354523
http://dx.doi.org/10.1038/sj.bjc.6605634
_version_ 1782180225802567680
author White, N M A
Chow, T-F F
Mejia-Guerrero, S
Diamandis, M
Rofael, Y
Faragalla, H
Mankaruous, M
Gabril, M
Girgis, A
Yousef, G M
author_facet White, N M A
Chow, T-F F
Mejia-Guerrero, S
Diamandis, M
Rofael, Y
Faragalla, H
Mankaruous, M
Gabril, M
Girgis, A
Yousef, G M
author_sort White, N M A
collection PubMed
description BACKGROUND: Kallikrein-related peptidases (KLKs) are a family of serine proteases that have been shown to be dysregulated in several malignancies including ovarian cancer. The control of kallikrein genes and their physiological function in cancer is not well understood. We hypothesized that microRNAs (miRNAs) represent a novel mechanism for post-transcriptional control of KLK expression in cancer. METHODS: We first analysed miRNA expression in ovarian cancer in silico. A total of 98 miRNAs were reported to have altered expression in ovarian cancer. Three of these miRNAs were predicted to target KLK10. We experimentally verified the predicted miR–KLK10 interaction using two independent techniques, a luciferase assay with a construct containing the KLK10 3′ untranslated region (UTR), pMIR–KLK10, and measuring KLK10 protein levels after transfection with miRNA. RESULTS: When we co-transfected cells with pMIR–KLK10 and either let-7f, miR-224, or mR-516a, we saw decreased luciferase signal, suggesting that these miRNAs can target KLK10. We then examined the effect of these three miRNAs on KLK10 protein expression and cell growth. Transfection of all miRNAs, let-7f, miR-224, and miR-516a led to a decrease in protein expression and cellular growth. This effect was shown to be dose dependent. The KLK10 protein levels were partially restored by co-transfecting let-7f and its inhibitor. In addition, there was a slight decrease in KLK10 mRNA expression after transfection with let-7f. CONCLUSION: Our results confirm that KLKs can be targeted by more than one miRNA. Increased expression of certain miRNAs in ovarian cancer can lead to decreased KLK protein expression and subsequently have a negative effect on cell proliferation. This dose-dependent effect suggests that a ‘tweaking’ or ‘fine-tuning’ mechanism exists in which the expression of one KLK can be controlled by multiple miRNAs. These data together suggest that miRNA may be used as potential therapeutic options and further studies are required.
format Text
id pubmed-2856011
institution National Center for Biotechnology Information
language English
publishDate 2010
publisher Nature Publishing Group
record_format MEDLINE/PubMed
spelling pubmed-28560112011-04-13 Three dysregulated miRNAs control kallikrein 10 expression and cell proliferation in ovarian cancer White, N M A Chow, T-F F Mejia-Guerrero, S Diamandis, M Rofael, Y Faragalla, H Mankaruous, M Gabril, M Girgis, A Yousef, G M Br J Cancer Translational Therapeutics BACKGROUND: Kallikrein-related peptidases (KLKs) are a family of serine proteases that have been shown to be dysregulated in several malignancies including ovarian cancer. The control of kallikrein genes and their physiological function in cancer is not well understood. We hypothesized that microRNAs (miRNAs) represent a novel mechanism for post-transcriptional control of KLK expression in cancer. METHODS: We first analysed miRNA expression in ovarian cancer in silico. A total of 98 miRNAs were reported to have altered expression in ovarian cancer. Three of these miRNAs were predicted to target KLK10. We experimentally verified the predicted miR–KLK10 interaction using two independent techniques, a luciferase assay with a construct containing the KLK10 3′ untranslated region (UTR), pMIR–KLK10, and measuring KLK10 protein levels after transfection with miRNA. RESULTS: When we co-transfected cells with pMIR–KLK10 and either let-7f, miR-224, or mR-516a, we saw decreased luciferase signal, suggesting that these miRNAs can target KLK10. We then examined the effect of these three miRNAs on KLK10 protein expression and cell growth. Transfection of all miRNAs, let-7f, miR-224, and miR-516a led to a decrease in protein expression and cellular growth. This effect was shown to be dose dependent. The KLK10 protein levels were partially restored by co-transfecting let-7f and its inhibitor. In addition, there was a slight decrease in KLK10 mRNA expression after transfection with let-7f. CONCLUSION: Our results confirm that KLKs can be targeted by more than one miRNA. Increased expression of certain miRNAs in ovarian cancer can lead to decreased KLK protein expression and subsequently have a negative effect on cell proliferation. This dose-dependent effect suggests that a ‘tweaking’ or ‘fine-tuning’ mechanism exists in which the expression of one KLK can be controlled by multiple miRNAs. These data together suggest that miRNA may be used as potential therapeutic options and further studies are required. Nature Publishing Group 2010-04-13 2010-03-30 /pmc/articles/PMC2856011/ /pubmed/20354523 http://dx.doi.org/10.1038/sj.bjc.6605634 Text en Copyright © 2010 Cancer Research UK https://creativecommons.org/licenses/by/4.0/This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made.The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in a credit line to the material.If material is not included in the article’s Creative Commons license and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this license, visit https://creativecommons.org/licenses/by/4.0/.
spellingShingle Translational Therapeutics
White, N M A
Chow, T-F F
Mejia-Guerrero, S
Diamandis, M
Rofael, Y
Faragalla, H
Mankaruous, M
Gabril, M
Girgis, A
Yousef, G M
Three dysregulated miRNAs control kallikrein 10 expression and cell proliferation in ovarian cancer
title Three dysregulated miRNAs control kallikrein 10 expression and cell proliferation in ovarian cancer
title_full Three dysregulated miRNAs control kallikrein 10 expression and cell proliferation in ovarian cancer
title_fullStr Three dysregulated miRNAs control kallikrein 10 expression and cell proliferation in ovarian cancer
title_full_unstemmed Three dysregulated miRNAs control kallikrein 10 expression and cell proliferation in ovarian cancer
title_short Three dysregulated miRNAs control kallikrein 10 expression and cell proliferation in ovarian cancer
title_sort three dysregulated mirnas control kallikrein 10 expression and cell proliferation in ovarian cancer
topic Translational Therapeutics
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2856011/
https://www.ncbi.nlm.nih.gov/pubmed/20354523
http://dx.doi.org/10.1038/sj.bjc.6605634
work_keys_str_mv AT whitenma threedysregulatedmirnascontrolkallikrein10expressionandcellproliferationinovariancancer
AT chowtff threedysregulatedmirnascontrolkallikrein10expressionandcellproliferationinovariancancer
AT mejiaguerreros threedysregulatedmirnascontrolkallikrein10expressionandcellproliferationinovariancancer
AT diamandism threedysregulatedmirnascontrolkallikrein10expressionandcellproliferationinovariancancer
AT rofaely threedysregulatedmirnascontrolkallikrein10expressionandcellproliferationinovariancancer
AT faragallah threedysregulatedmirnascontrolkallikrein10expressionandcellproliferationinovariancancer
AT mankaruousm threedysregulatedmirnascontrolkallikrein10expressionandcellproliferationinovariancancer
AT gabrilm threedysregulatedmirnascontrolkallikrein10expressionandcellproliferationinovariancancer
AT girgisa threedysregulatedmirnascontrolkallikrein10expressionandcellproliferationinovariancancer
AT yousefgm threedysregulatedmirnascontrolkallikrein10expressionandcellproliferationinovariancancer