Cargando…

The Blimp1–Bcl6 axis is critical to regulate osteoclast differentiation and bone homeostasis

Controlling osteoclastogenesis is critical to maintain physiological bone homeostasis and prevent skeletal disorders. Although signaling activating nuclear factor of activated T cells 1 (NFATc1), a transcription factor essential for osteoclastogenesis, has been intensively investigated, factors anta...

Descripción completa

Detalles Bibliográficos
Autores principales: Miyauchi, Yoshiteru, Ninomiya, Ken, Miyamoto, Hiroya, Sakamoto, Akemi, Iwasaki, Ryotaro, Hoshi, Hiroko, Miyamoto, Kana, Hao, Wu, Yoshida, Shigeyuki, Morioka, Hideo, Chiba, Kazuhiro, Kato, Shigeaki, Tokuhisa, Takeshi, Saitou, Mitinori, Toyama, Yoshiaki, Suda, Toshio, Miyamoto, Takeshi
Formato: Texto
Lenguaje:English
Publicado: The Rockefeller University Press 2010
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2856022/
https://www.ncbi.nlm.nih.gov/pubmed/20368579
http://dx.doi.org/10.1084/jem.20091957
Descripción
Sumario:Controlling osteoclastogenesis is critical to maintain physiological bone homeostasis and prevent skeletal disorders. Although signaling activating nuclear factor of activated T cells 1 (NFATc1), a transcription factor essential for osteoclastogenesis, has been intensively investigated, factors antagonistic to NFATc1 in osteoclasts have not been characterized. Here, we describe a novel pathway that maintains bone homeostasis via two transcriptional repressors, B cell lymphoma 6 (Bcl6) and B lymphocyte–induced maturation protein-1 (Blimp1). We show that Bcl6 directly targets ‘osteoclastic’ molecules such as NFATc1, cathepsin K, and dendritic cell-specific transmembrane protein (DC-STAMP), all of which are targets of NFATc1. Bcl6-overexpression inhibited osteoclastogenesis in vitro, whereas Bcl6-deficient mice showed accelerated osteoclast differentiation and severe osteoporosis. We report that Bcl6 is a direct target of Blimp1 and that mice lacking Blimp1 in osteoclasts exhibit osteopetrosis caused by impaired osteoclastogenesis resulting from Bcl6 up-regulation. Indeed, mice doubly mutant in Blimp1 and Bcl6 in osteoclasts exhibited decreased bone mass with increased osteoclastogenesis relative to osteoclast-specific Blimp1-deficient mice. These results reveal a Blimp1–Bcl6–osteoclastic molecule axis, which critically regulates bone homeostasis by controlling osteoclastogenesis and may provide a molecular basis for novel therapeutic strategies.