Cargando…
Cohesinopathies, gene expression, and chromatin organization
The cohesin protein complex is best known for its role in sister chromatid cohesion, which is crucial for accurate chromosome segregation. Mutations in cohesin proteins or their regulators have been associated with human diseases (termed cohesinopathies). The developmental defects observed in these...
Autores principales: | , |
---|---|
Formato: | Texto |
Lenguaje: | English |
Publicado: |
The Rockefeller University Press
2010
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2856913/ https://www.ncbi.nlm.nih.gov/pubmed/20404106 http://dx.doi.org/10.1083/jcb.200912129 |
Sumario: | The cohesin protein complex is best known for its role in sister chromatid cohesion, which is crucial for accurate chromosome segregation. Mutations in cohesin proteins or their regulators have been associated with human diseases (termed cohesinopathies). The developmental defects observed in these diseases indicate a role for cohesin in gene regulation distinct from its role in chromosome segregation. In mammalian cells, cohesin stably interacts with specific chromosomal sites and colocalizes with CTCF, a protein that promotes long-range DNA interactions, implying a role for cohesin in genome organization. Moreover, cohesin defects compromise the subnuclear position of chromatin. Therefore, defects in the cohesin network that alter gene expression and genome organization may underlie cohesinopathies. |
---|