Cargando…
Genome-wide selection by mixed model ridge regression and extensions based on geostatistical models
BACKGROUND: The success of genome-wide selection (GS) approaches will depend crucially on the availability of efficient and easy-to-use computational tools. Therefore, approaches that can be implemented using mixed models hold particular promise and deserve detailed study. A particular class of mixe...
Autores principales: | Schulz-Streeck, Torben, Piepho, Hans-Peter |
---|---|
Formato: | Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2010
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2857850/ https://www.ncbi.nlm.nih.gov/pubmed/20380762 http://dx.doi.org/10.1186/1753-6561-4-S1-S8 |
Ejemplares similares
-
Genomic selection using regularized linear regression models: ridge regression, lasso, elastic net and their extensions
por: Ogutu, Joseph O, et al.
Publicado: (2012) -
Pre-selection of markers for genomic selection
por: Schulz-Streeck, Torben, et al.
Publicado: (2011) -
A comparison of random forests, boosting and support vector machines for genomic selection
por: Ogutu, Joseph O, et al.
Publicado: (2011) -
Regularized group regression methods for genomic prediction: Bridge, MCP, SCAD, group bridge, group lasso, sparse group lasso, group MCP and group SCAD
por: Ogutu, Joseph O, et al.
Publicado: (2014) -
Genome-wide association analyses of the 15(th )QTL-MAS workshop data using mixed model based single locus regression analysis
por: Fu, Wei-Xuan, et al.
Publicado: (2012)