Cargando…

Investigation of the direct effects of salmon calcitonin on human osteoarthritic chondrocytes

BACKGROUND: Calcitonin has been demonstrated to have chondroprotective effects under pre-clinical settings. It is debated whether this effect is mediated through subchondral-bone, directly on cartilage or both in combination. We investigated possible direct effects of salmon calcitonin on proteoglyc...

Descripción completa

Detalles Bibliográficos
Autores principales: Sondergaard, Bodil-Cecilie, Madsen, Suzi H, Segovia-Silvestre, Toni, Paulsen, Sarah J, Christiansen, Thorbjorn, Pedersen, Christian, Bay-Jensen, Anne-Christine, Karsdal, Morten A
Formato: Texto
Lenguaje:English
Publicado: BioMed Central 2010
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2858096/
https://www.ncbi.nlm.nih.gov/pubmed/20367884
http://dx.doi.org/10.1186/1471-2474-11-62
Descripción
Sumario:BACKGROUND: Calcitonin has been demonstrated to have chondroprotective effects under pre-clinical settings. It is debated whether this effect is mediated through subchondral-bone, directly on cartilage or both in combination. We investigated possible direct effects of salmon calcitonin on proteoglycans and collagen-type-II synthesis in osteoarthritic (OA) cartilage. METHODS: Human OA cartilage explants were cultured with salmon calcitonin [100 pM-100 nM]. Direct effects of calcitonin on articular cartilage were evaluated by 1) measurement of proteoglycan synthesis by incorporation of radioactive labeled (35)SO(4 )[5 μCi] 2) quantification of collagen-type-II formation by pro-peptides of collagen type II (PIINP) ELISA, 3) QPCR expression of the calcitonin receptor in OA chondrocytes using four individual primer pairs, 4) activation of the cAMP signaling pathway by EIA and, 5) investigations of metabolic activity by AlamarBlue. RESULTS: QPCR analysis and subsequent sequencing confirmed expression of the calcitonin receptor in human chondrocytes. All doses of salmon calcitonin significantly elevated cAMP levels (P < 0.01 and P < 0.001). Calcitonin significantly and concentration-dependently [100 pM-100 nM] induced proteoglycan synthesis measured by radioactive (35)SO(4 )incorporation, with a 96% maximal induction at 10 nM (P < 0.001) corresponding to an 80% induction of 100 ng/ml IGF, (P < 0.05). In alignment with calcitonin treatments [100 pM-100 nM] resulted in 35% (P < 0.01) increased PIINP levels. CONCLUSION: Calcitonin treatment increased proteoglycan and collagen synthesis in human OA cartilage. In addition to its well-established effect on subchondral bone, calcitonin may prove beneficial to the management of joint diseases through direct effects on chondrocytes.