Cargando…
Time Course and Mechanisms of Circulating Progenitor Cell Reduction in the Natural History of Type 2 Diabetes
OBJECTIVE: Reduction of bone marrow–derived circulating progenitor cells has been proposed as a novel mechanism of cardiovascular disease in type 2 diabetes. The present study was designed to describe the extent and potential mechanisms of progenitor cell reduction during the natural history of type...
Autores principales: | , , , , , , , , |
---|---|
Formato: | Texto |
Lenguaje: | English |
Publicado: |
American Diabetes Association
2010
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2858183/ https://www.ncbi.nlm.nih.gov/pubmed/20150295 http://dx.doi.org/10.2337/dc09-1999 |
Sumario: | OBJECTIVE: Reduction of bone marrow–derived circulating progenitor cells has been proposed as a novel mechanism of cardiovascular disease in type 2 diabetes. The present study was designed to describe the extent and potential mechanisms of progenitor cell reduction during the natural history of type 2 diabetes. RESEARCH DESIGN AND METHODS: We identified 425 individuals, divided into seven categories according to carbohydrate metabolism status (normal glucose tolerance [NGT], impaired fasting glucose, impaired glucose tolerance [IGT], and newly diagnosed type 2 diabetes) and diabetes duration (0–9, 10–19, and ≥20 years). These categories were examined as ideally describing the natural history of type 2 diabetes development and progression. We measured CD34+ and CD34+KDR+ progenitor cells by flow cytometry. We also evaluated progenitor cells in 20 coupled bone marrow and peripheral blood samples and examined progenitor cell apoptosis in 34 subjects. RESULTS: In comparison to NGT, CD34+ cells were significantly reduced in IGT and had a first nadir in newly diagnosed type 2 diabetes and a second nadir after 20 years of diabetes. Statistical adjustment for possible confounders confirmed that CD34+ cell counts are deeply reduced at time of diagnosis, that they partially recover during the subsequent 0–19 years, and that they dip again after ≥20 years. A similar, but less consistent, trend was detected for CD34+KDR+ cells. Peripheral blood CD34+ cells were directly correlated with bone marrow CD34+ cells and inversely correlated with CD34+ cell apoptosis. CONCLUSIONS: Circulating progenitor cell reduction marks the clinical onset of type 2 diabetes. Both defective mobilization and increased apoptosis may account for this phenomenon. While a partial recovery occurs during subsequent years, bone marrow reserve seems exhausted in the long term. |
---|