Cargando…

Quantitative Modeling of the High-Throughput Production and In Vivo Kinetics of (Drug-Encapsulating) Liposomes

In developing liposomes for in vivo use, it is important to design the liposomes to have optimal in vivo kinetics, and it is also necessary to identify optimal high-throughput production conditions for these liposomes. Previous work has not definitively established the general relationship between l...

Descripción completa

Detalles Bibliográficos
Autor principal: Wong, Albert
Formato: Texto
Lenguaje:English
Publicado: Public Library of Science 2010
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2859061/
https://www.ncbi.nlm.nih.gov/pubmed/20428243
http://dx.doi.org/10.1371/journal.pone.0010280
Descripción
Sumario:In developing liposomes for in vivo use, it is important to design the liposomes to have optimal in vivo kinetics, and it is also necessary to identify optimal high-throughput production conditions for these liposomes. Previous work has not definitively established the general relationship between liposomes' configuration and composition, and their in vivo kinetics. Also, no straightforward method exists to calculate optimal liposome high-throughput production conditions for specific liposome compositions. This work presents first-principles quantitative correlations describing liposomes' in vivo drug leakage and vascular mass transfer kinetics. This work further presents a simple quantitative model relating specific liposome compositions to ideal high-throughput production parameters. The results have implications for the identification of promising liposome compositions via high-throughput screening methodologies, as well as the design and optimization of high-throughput reactors for liposome production.