Cargando…
Going from where to why—interpretable prediction of protein subcellular localization
Motivation: Protein subcellular localization is pivotal in understanding a protein's function. Computational prediction of subcellular localization has become a viable alternative to experimental approaches. While current machine learning-based methods yield good prediction accuracy, most of th...
Autores principales: | Briesemeister, Sebastian, Rahnenführer, Jörg, Kohlbacher, Oliver |
---|---|
Formato: | Texto |
Lenguaje: | English |
Publicado: |
Oxford University Press
2010
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2859129/ https://www.ncbi.nlm.nih.gov/pubmed/20299325 http://dx.doi.org/10.1093/bioinformatics/btq115 |
Ejemplares similares
-
YLoc—an interpretable web server for predicting subcellular localization
por: Briesemeister, Sebastian, et al.
Publicado: (2010) -
MultiLoc2: integrating phylogeny and Gene Ontology terms improves subcellular protein localization prediction
por: Blum, Torsten, et al.
Publicado: (2009) -
No Longer Confidential: Estimating the Confidence of Individual Regression Predictions
por: Briesemeister, Sebastian, et al.
Publicado: (2012) -
Protein (multi-)location prediction: utilizing interdependencies via a generative model
por: Simha, Ramanuja, et al.
Publicado: (2015) -
Sparse regressions for predicting and interpreting subcellular localization of multi-label proteins
por: Wan, Shibiao, et al.
Publicado: (2016)