Cargando…
Blind Source Separation of Hemodynamics from Magnetic Resonance Perfusion Brain Images Using Independent Factor Analysis
Perfusion magnetic resonance brain imaging induces temporal signal changes on brain tissues, manifesting distinct blood-supply patterns for the profound analysis of cerebral hemodynamics. We employed independent factor analysis to blindly separate such dynamic images into different maps, that is, ar...
Autores principales: | Chou, Yen-Chun, Lu, Chia-Feng, Guo, Wan-Yuo, Wu, Yu-Te |
---|---|
Formato: | Texto |
Lenguaje: | English |
Publicado: |
Hindawi Publishing Corporation
2010
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2859413/ https://www.ncbi.nlm.nih.gov/pubmed/20445739 http://dx.doi.org/10.1155/2010/360568 |
Ejemplares similares
-
Hemodynamic Segmentation of Brain Perfusion Images with Delay and Dispersion Effects Using an Expectation-Maximization Algorithm
por: Lu, Chia-Feng, et al.
Publicado: (2013) -
Handbook of blind source separation: independent component analysis and applications
por: Comon, Pierre, et al.
Publicado: (2010) -
A Novel Blind Separation Method in Magnetic Resonance Images
por: Gao, Jianbin, et al.
Publicado: (2014) -
Using Flat-Panel Perfusion Imaging to Measure Cerebral Hemodynamics: A Pilot Feasibility Study in Patients With Carotid Stenosis
por: Lin, Chung-Jung, et al.
Publicado: (2016) -
Transfer Function Analysis of Respiratory and Cardiac Pulsations in Human Brain Observed on Dynamic Magnetic Resonance Images
por: Kao, Yi-Hsuan, et al.
Publicado: (2013)