Cargando…
Integrating gene expression and GO classification for PCA by preclustering
BACKGROUND: Gene expression data can be analyzed by summarizing groups of individual gene expression profiles based on GO annotation information. The mean expression profile per group can then be used to identify interesting GO categories in relation to the experimental settings. However, the expres...
Autores principales: | De Haan, Jorn R, Piek, Ester, van Schaik, Rene C, de Vlieg, Jacob, Bauerschmidt, Susanne, Buydens, Lutgarde MC, Wehrens, Ron |
---|---|
Formato: | Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2010
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2860362/ https://www.ncbi.nlm.nih.gov/pubmed/20346140 http://dx.doi.org/10.1186/1471-2105-11-158 |
Ejemplares similares
-
Survival models with preclustered gene groups as covariates
por: Kammers, Kai, et al.
Publicado: (2011) -
Dissimilarity based Partial Least Squares (DPLS) for genomic prediction from SNPs
por: Singh, Priyanka, et al.
Publicado: (2016) -
PCA2GO: a new multivariate statistics based method to identify highly expressed GO-Terms
por: Bruckskotten, Marc, et al.
Publicado: (2010) -
New bandwidth selection criterion for Kernel PCA: Approach to dimensionality reduction and classification problems
por: Thomas, Minta, et al.
Publicado: (2014) -
GO-PCA: An Unsupervised Method to Explore Gene Expression Data Using Prior Knowledge
por: Wagner, Florian
Publicado: (2015)