Cargando…

Midkine, heparin-binding growth factor, blocks kainic acid-induced seizure and neuronal cell death in mouse hippocampus

BACKGROUND: Midkine (MK), a member of the heparin-binding growth factor family, which includes MK and pleiotrophin, is known to possess neurotrophic and neuroprotective properties in the central nervous system. Previous studies have shown that MK is an effective neuroprotective agent in reducing ret...

Descripción completa

Detalles Bibliográficos
Autores principales: Kim, Yun B, Ryu, Jae K, Lee, Hong J, Lim, In J, Park, Dongsun, Lee, Min C, Kim, Seung U
Formato: Texto
Lenguaje:English
Publicado: BioMed Central 2010
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2861065/
https://www.ncbi.nlm.nih.gov/pubmed/20346117
http://dx.doi.org/10.1186/1471-2202-11-42
Descripción
Sumario:BACKGROUND: Midkine (MK), a member of the heparin-binding growth factor family, which includes MK and pleiotrophin, is known to possess neurotrophic and neuroprotective properties in the central nervous system. Previous studies have shown that MK is an effective neuroprotective agent in reducing retinal degeneration caused by excessive light and decreasing hippocampal neuronal death in ischemic gerbil brain. The present study was undertaken to investigate whether MK acts as an anticonvulsant in kainic acid (KA)-induced seizure in mouse and blocks KA-mediated neuronal cell death in hippocampus. RESULTS: Increased expression of MK was found in hippocampus of mouse following seizures induced by intracerebroventricular injection of KA, and MK expression was found in glial fibrillary acidic protein (GFAP)-positive astrocytes. Concurrent injection of MK and KA attenuated KA-induced seizure activity and cell death of hippocampal neurons including pyramidal cells and glutamic acid decarboxylase 67 (GAD67)-positive GABAergic interneurons in the CA3 and hilar area. CONCLUSION: The results of the present study indicate that MK functions as an anticonvulsant and neuroprotective agent in hippocampus during KA-induced seizures.