Cargando…

A neuronal role for SNAP-23 in postsynaptic glutamate receptor trafficking

Regulated exocytosis is essential for many biological processes, and many components of the protein trafficking machinery are ubiquitous. However, there are also exceptions such as SNAP-25, a neuron-specific SNARE protein, which is essential for synaptic vesicle release from presynaptic nerve termin...

Descripción completa

Detalles Bibliográficos
Autores principales: Suh, Young Ho, Terashima, Akira, Petralia, Ronald S., Wenthold, Robert J., Isaac, John T.R., Roche, Katherine W., Roche, Paul A.
Formato: Texto
Lenguaje:English
Publicado: 2010
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2861127/
https://www.ncbi.nlm.nih.gov/pubmed/20118925
http://dx.doi.org/10.1038/nn.2488
Descripción
Sumario:Regulated exocytosis is essential for many biological processes, and many components of the protein trafficking machinery are ubiquitous. However, there are also exceptions such as SNAP-25, a neuron-specific SNARE protein, which is essential for synaptic vesicle release from presynaptic nerve terminals. In contrast, SNAP-23 is the ubiquitously-expressed SNAP-25 homologue that is critical for regulated exocytosis in non-neuronal cells. However, the role of SNAP-23 in neurons has not been elucidated. We now find that SNAP-23 is enriched in dendritic spines and colocalizes with constituents of the postsynaptic density, whereas SNAP-25 is restricted to axons. In addition, loss of SNAP-23 using genetically-altered mice or shRNA targeted to SNAP-23 leads to a dramatic decrease in NMDA receptor surface expression and NMDA receptor currents, whereas loss of SNAP-25 does not. Therefore SNAP-23 plays a unique role in the functional regulation of postsynaptic glutamate receptors.